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1 Introduction

The study of amenable groups is an important subfield of topological algebra.

Amenability first appeared in the work of John von Neumann [9] in his investigation

of the Banach-Tarski paradox. In von Neumann’s formulation, a group is amenable

if there exists a left-invariant mean on the group, meaning a finitely additive

probability measure that remains unchanged under translations by group elements.

Later it was discovered that the amenability of a topological group is equivalent

to a certain fixed-point property for continuous group actions. Specifically, a

topological group is amenable if and only if every affine action of the group on a

compact convex set admits a fixed point.

A stronger notion than amenability is extreme amenability. A topological group

is said to be extremely amenable if every continuous action on a compact space

has a fixed point, without additional restrictions on the nature of the action or the

space.

In this thesis, we study a particular class of topological groups, denoted by

L0(µ,G). The elements of these groups are a special kind of limit of simple

functions that take values in a topological groupG and are measurable with respect

to a submeasure µ. The structure of such groups depends on two main components:

the submeasure µ and the topological group G.

These groups have been extensively studied under various conditions imposed on

the submeasure µ and the group G. A central open question in this area concerns

the extreme amenability of L0(µ,G) when G itself is amenable.

In this thesis, we establish that L0(µ,G) is extremely amenable when µ is a diffuse

submeasure and G is an abelian topological group. Our approach links extreme

amenability to a graph coloring problem. Specifically, we show that the group is

extremely amenable if and only if a certain sequence of graphs admits no uniform

finite bound on the number of colors required for a proper coloring. In Section 4, we

introduce these graphs and formulate the coloring criterion. In Section 6, we prove

a lower bound on the chromatic number of these graphs, using a monotonically

increasing function related to their size. Section 5 provides an essential result

concerning simplicial complexes associated with these graphs, which is necessary

for the proof in Section 6.
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Sections 2 and 3 develop the theoretical background required for the main arguments,

covering fundamental topics from topology, algebraic topology, topological algebra,

simplicial complexes, and homological algebra.

The general definitions of topology presented in Sections 2 and 3 can be found

in any standard textbook on topology and algebraic topology. In Section 2, the

definitions of general topology are primarily drawn from [7], with the concepts

of filters and key results about them based on [11]. The definitions related to

algebraic topology follow [8], while those concerning topological algebra are taken

from [1].

Section 3 introduces simplicial complexes following [8], and the discussion on

singular homology is inspired by Professor Martin Schneider’s lecture Geometry

and Topology, as well as [4]. Proofs of more advanced results are cited directly

within the respective sections.

The key results in Sections 4, 5, and 6 are based on the work of Marcin Sabok

[13].

All submeasures used in this thesis are submeasures defined on the power set

algebra of a set X. This is possible because of the representation theorem of Stone

from which follows that every boolean algebra can be represent as a power set

algebra of a set.
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2 Topology, Topological Algebra and Algebraic

Topology

2.1 Topology

2.1.1 Topological Spaces

Definition 2.1:

Let X be a set. A topology T on X is a collection of subsets of X obeying the

following axioms

1. X ∈ T ∋ ∅,

2.
⋃
α∈I

Aα ∈ T , where I is an arbitrary index set and Aα ∈ T for all α ∈ I,

3.
n⋂

i=0

Ai ∈ T for n ∈ N and Ai ∈ T .

The tuple (X, T ) where T is a topology on X, is called a topological space. ♠

In the following we will say that X is a topological space without mentioning the

explicit topology every time.

Definition 2.2:

Let X be a topological space. A family of open sets B ⊆ TX is called a basis of

the topology on X if

∀U ∈ TX∀x ∈ U∃B ∈ B : x ∈ B ⊆ U.

A family of open sets S ⊆ TX is called a subbasis of the topology on X if

{⋂
S ′ : S ′ ∈ Pfin(S)

}
is a basis of the topology on X. ♠

The intuitive idea of the definition above is that every open set in the topological

space X can be represented by an arbitrary union of basis elements. Additionally

each basis element is only a finite intersection of subbasis elements.

In many cases it is not possible to describe the topology on X directly and one

can only give a basis for the topology. Then one can talk about T (B) which is the
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topology generated by the set B. This topology consists of all arbitrary unions of

elements in B. The next lemma shows that not every subset of P(X) is a basis

for a well-defined topology topology on X.

Lemma 2.3:

Let X be a set and let B ⊆ P(X), then the following are equivalent:

• B is the basis of a topology on X,

•
⋃
B = X and ∀B1, B2 ∈ B∃B3 ∈ B : ∀x ∈ B1 ∩B2 : x ∈ B3 ⊆ B1 ∩B2.

Proof. See [7, p. 78f.].

Example 2.4:

Here are some examples of topological spaces which will be needed later.

i.) Let X be a nonempty set. Then the set TX := {X, ∅} is a topology on X

called the chaotic topology.

ii.) Let (P,<) be a totally ordered set1. Define for a, b ∈ P with a < b the open

interval from a to b as (a, b) := {x ∈ X : a < x ∧ x < b} and similarly

define the half open intervals [a, b) := {a} ∪ (a, b) and (a, b] := (a, b) ∪ {b}.

Then the order topology on P is generated by the basis

B := {(a, b) : a, b ∈ P} ∪ {[a0, b) : b ∈ P} ∪ {(b, a1] : b ∈ P}

where a0 is the smallest element in P if existent and a1 is the largest element

in P if existent.

Definition 2.5:

Let X and Y be topological spaces. A map f : X → Y is called continuous if for

all A ∈ TY it follows that f−1(A) ∈ TX . ♠

Definition 2.6:

Let X be a topological space and let A ⊆ X. A collection of subsets (Ai)i∈I of A

where Ai ∈ P(X) and I is an arbitrary index set is called a cover of A if it fulfills

the following property ⋃
i∈I

Ai = A. (1)

1see [7, p. 24] for definition of total order (there simple order)
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If the elements of the cover are open subsets of X the cover is called an open cover.

A subcollection of a cover of A is called a subcover if it still fulfills Equation 1. ♠

Definition 2.7:

Let X be a topological space and A ⊆ X. A is called compact if every open cover

of A has a finite subcover.

Furthermore X is called locally-compact if there exists a neighborhood basis of

compact sets at each point x ∈ X. ♠

2.1.2 Filters

In a metric space (X, dX), a sequence (xi)i∈N is said to converge to a limit point

x ∈ X if, for every ε ∈ R>0, there exists an N ∈ N such that for all n ≥ N , the

distance satisfies dX(x, xn) < ε. This definition of convergence, however, relies on

specific topological properties of metric spaces and does not extend naturally to

general topological spaces.

To address this limitation, topology introduces a more general concept of sequences

known as nets. Nets extend the idea of sequences by allowing arbitrary index

sets, making it possible to work with uncountable sequences. Despite this added

flexibility, nets still share some of the same challenges as sequences—for example,

selecting a convergent subsequence in a compact set.

Fortunately, an even more general notion of convergence exists in topology, which

overcomes the limitations of both sequences and nets while still accommodating

uncountable sequences. In the following this broader framework of convergence

will be built up.

Definition 2.8:

Let X be a topological space, let x ∈ X and let (xi)i∈N be a sequence in X. Then

the sequence of the xn converges to x (xn → x) if

∀U ∈ Nx∃N ∈ N∀n ≥ N : xn ∈ U.

Let A ⊆ X and x ∈ X. Then x is called an accumulation point of A if for

every U ∈ Nx we can find y ∈ U ∩ A with y ̸= x. ♠

This is a more general definition of convergence of sequences working in arbitrary
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topological spaces. The abstract definition of topological spaces makes this new

notion of limits not as intuitive as in the special metric case. In some topological

spaces there exist sequences that do not have a unique limit.

Example 2.9:

Consider the topological space of the real numbers R but with the chaotic topology

(see 2.4 i.)). In this topological space, every sequence of numbers converges against

every point. To this end consider a sequence (xi)i∈N in R and a real number x. We

only have to check one open neighborhood of x namely the set R. And this trivially

fulfills the condition of Definition 2.8 because every sequence member is contained

in it. So we have shown that an arbitrary sequence in this space converges against

an arbitrary point.

This shows that additional assumptions have to be imposed onto a topological

space such that the definition of convergence against a limit point makes sense.

Definition 2.10:

A topological space X is called Hausdorff if for any two points x, y ∈ X there

exists an open neighborhood U of x and an open neighborhood V of y which are

disjoint. ♠

This property is enough such that every convergent sequence has a unique limit.

Theorem 2.11:

Let X be a topological space. If X is Hausdorff then every convergent sequence

in X has a unique limit.

Proof. Let (an)n∈N be a sequence in X and suppose it converges against x and y

in X with x ̸= y. Because of the assumption that X is Hausdorff there are open

neighborhoods of the limit points U and V which are disjoint. Now we know that

there are natural numbers n0 and n1 with the property

∀n ≥ n0 : an ∈ U ∧ ∀n ≥ n1 : an ∈ V.

This means for n := max(n0, n1) that an ∈ U ∩ V = ∅  .

The next example will show that this definition is not general enough for every

topological space.
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Example 2.12 ([11, 5.3 Beispiel]):

Let (Ω,≥) be an uncountable set which is well-ordered, has a biggest element ω1

and for all α ∈ Ω with α < ω1 the set {β ∈ Ω: β ≤ a} is countable2. Now define

the topological space Ω with the order topology like in 2.4 ii.) and Ω0 := Ω\{ω1}.

It holds that ω1 is an accumulation point of Ω0 but there is no sequence in Ω0 that

converges to ω1.

Proof. Suppose there is a sequence (αn)n∈N in Ω0 such αn → ω1. This means that

supn∈N an = ω1. Now define

An = {β : β ≤ an}

for all n ∈ N. Since the sets An are all countable by definition of Ω the set

B :=
⋃
n∈N

An = {β ∈ Ω: ∃m ∈ N : β ≤ am}

is also countable. This means the smallest element of Ω \ B is well-defined. Call

it γ. Thus

β ∈ B ⇐⇒ β ≤ γ.

But by definition of Ω and the fact that γ ∈ Ω0 it follows that γ < ω1. Now we

get

sup
n∈N

an ≤ γ < ω1.  

This example illustrates the fact that not in every topological space, the standard

definition of a sequence and convergence of a sequence is enough. There can be

accumulation points that cannot be reached by any sequence. The problem is that

the element ω1 has an uncountable neighborhood basis (see 2.14) and sequences

have only countable many elements such that the definition of convergence cannot

be fulfilled by a sequence because of cardinality reasons. This problem cannot arise

in metric spaces because the countability of all neighborhood basis is a condition

for a topological space to be metrizable (see [7, p. 130f]).

In the following a more general definition of convergence in a topological space is

developed.

2This construction is possible because of the well-ordering principle. See [11, p. 53]
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Definition 2.13:

A filter F on a non-empty set X is a collection of subsets of X such that:

1. X ∈ F , ∅ /∈ F ,

2. ∀A,B ∈ F : A ∩B ∈ F ,

3. ∀A ⊆ B ⊆ X : A ∈ F ⇒ B ∈ F .

Denote by Flt(X) the set of all filters on X. Let F ′ be another filter on X. If

F ⊆ F ′ we call F ′ finer than F or F coarser than F ′. A family of subsets F0 ⊆ F

of X is called a filter basis of F if

∀F ∈ F∃F0 ∈ F0 : F0 ⊆ F. ♠

Definition 2.14:

Let X be a topological space. A neighborhood basis at x ∈ X is a filter basis

of the neighborhood filter NX(x). ♠

Lemma 2.15:

Let B be a collection of non-empty subsets of a non-empty set X. B is a basis of

a filter if and only if

∀B1, B2 ∈ B∃B3 ∈ B : B3 ⊆ B1 ∩B2. (2)

Proof. Assume B is the basis of a filter F on X. It holds especially that B ⊆ F .

Let B1, B2 ∈ B. Since these are also filter elements it follows that B1 ∩ B2 ∈ B

which proves the claim.

Now assume that B fulfills equations 2 and let B1, B2 ∈ B. Define the filter

F := {F ∈ P(X) \ {∅} : ∃B ∈ B : B ⊆ F}.

It is clear that ∅ /∈ F ∋ X. Furthermore this filter is closed under the operation

of taking supersets by definition. Now suppose that F1, F2 ∈ F . There exist

B1, B2 ∈ B with B1 ⊆ F1 and B2 ⊆ F2. Now by Equation 2 it follows that there

is B3 ∈ B with B3 ⊆ B1 ∩B2 and thus

∅ ≠ B3 ⊆ B1 ∩B2 ⊆ F1 ∩ F2.
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Hence F1 ∩ F2 ∈ F .

From this point the notation F(B) := {F ∈ P(X) : ∃B ∈ B : B ⊆ F} represents

the filter on X generated by the filter basis B.

Corollary 2.16:

Let X be a non-empty set, A ⊆ X and let F be a filter on X. If A∩F ̸= ∅ for all

F ∈ F then the set A := {A ∩ F : F ∈ F} forms a filter basis of a filter which is

finer than F .

Proof. Let F1, F2 ∈ F and define A1 := F1 ∩ A and A2 := F2 ∩ A. Now consider

A1 ∩ A2 = (F1 ∩ A) ∩ (F2 ∩ A) = F1 ∩ F2 ∩ A = F3 ∩ A ∈ A

where F3 = F1 ∩ F2 ∈ F . Thus A is a filter basis by Lemma 2.15.

Now consider the filter F(A). Since A is a filter basis of this filter all elements

of the form F ∩A for F ∈ F are contained in F(A). For each F ∈ F there exists

F ∩ A ∈ F(A) and since F ∩ A ⊆ F it follows that F ∈ F(A).

Definition 2.17:

An ultrafilter F on X is a filter on X with the property that if there is another

filter on X called F ′ such that F ⊆ F ′ it follows that F = F ′. Denote by UFlt(X)

the set of all ultrafilters on X. If
⋂
F = ∅ the ultrafilter is called free. ♠

Lemma 2.18:

Let X be a non-empty set and let F ∈ UFlt(X) then

∀A ⊆ X : A ∈ F ∨ Ac ∈ F .

Proof. Since A∩Ac = ∅ there are no two sets F1, F2 ∈ F with F1 ⊆ A and F2 ⊆ Ac.

This means that for all F ∈ F either F ∩ A ̸= ∅ or F ∩ Ac ̸= ∅. Assume w.l.o.g.

that A∩F ̸= ∅ for all F ∈ F . From this it follows that {F ∩A : F ∈ F} is a filter

basis of a filter G which is finer than F by Corollary 2.16. Since F is an ultrafilter

it follows that F = G and thus A ∈ F . [11, 5.12 Satz]

Definition 2.19:

Let X be a topological space. A filter F converges to an element x in X (F → x)

if Nx ⊆ F .
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Let Y be another topological space and f : X → Y a continuous function.

We call f(F) the image filter of F under f which is the filter with filter basis

{f(F ) : F ∈ F}. Another notation for the convergence of a filter is lim
F→F

f(F )

(instead of f(F) → y). ♠

Indeed the new definition of convergence extends the old one from 2.8. Let X be

a topological space and let (xn)n∈N be a sequence in X which converges to x ∈ X.

Then there exists a filter on X which converges to x namely NX(x). The inverse

is not true because the new definition of convergence now allows the convergence

to the point ω1 in Example 2.12. And it is also true that if A ⊆ X and a ∈ Ā then

there exists a filter that converges to a. This is not true for sequences by Example

2.12.

Theorem 2.20:

Let X be a topological space and let A ⊆ X. Then

x ∈ Ā ⇐⇒ ∃F ∈ Flt(X) : A ∈ F ∧ F → x.

Proof. See [11, 5.17 Satz].

Definition 2.21:

The Cofinite-Filter FCF on an infinite set X is defined as

FCF := {F ∈ P(X) : |F c| <∞}. ♠

Lemma 2.22:

Let X be an infinite set, then the Cofinite-Filter on X is a free filter.

Proof. It is trivial to see that X ∈ FCF and ∅ /∈ FCF . So let A,B ∈ FCF then

(A ∩B)c = Ac ∪Bc ⇒ |(A ∩B)c| = |Ac ∪Bc| ≤ |Ac|+ |Bc| <∞

since Ac and Bc are finite. Now assume that A ⊆ B. It follows that

A ⊆ B ⇒ Bc ⊆ Ac ⇒ |Bc| ≤ |Ac| <∞.

This proves that FCF is a filter on X. Now assume that
⋂
FCF is non-empty and
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let x ∈
⋂
FCF . Now let F ∈ FCF . By assumption it follows that x ∈ F and

|(F \ {x})c| = |F c|+ |{x}| = |F c|+ 1 <∞

and hence F \ {x} ∈ FCF .  

Theorem 2.23:

Let X be non-empty set. Every filter on X is contained in an ultrafilter on X.

Proof. Let F be a filter on X and let Φ be the set of all filters on X that are finer

than F . This set forms a partial order together with the ⊆ relation. If Φ1 is a

totally ordered subset of Φ then define F ′ :=
⋃
G∈Φ

G. Claim: F ′ is a filter on X.

The first property is clear because every filter contains X and does not contain ∅.

Now let A,B ∈ F ′. This means that there are filters G1 and G2 in F ′ with A ∈ G1

and B ∈ G2. Since G1 ∈ Φ1 and G2 ∈ Φ1 it follows that G1 ⊆ G2 or G2 ⊆ G1.

Suppose w.l.o.g. that G1 ⊆ G2. It follows that

A ∈ G2 ⇒ A ∪B ∈ G2 ⇒ A ∪B ∈ F ′.

Now suppose that A ∈ F ′ and A ⊆ B ⊆ X. Since there is an G ∈ Φ1 with A ∈ G

we can conclude that

B ∈ G ⇒ B ∈ F ′.

This proves the claim. F ′ is an upper bound of Φ1 and thus Φ1 is inductively

sorted. The existence of an ultrafilter on X follows from Zorn’s Lemma. [11, 5.12

Satz]

Corollary 2.24:

Let X be a infinite set. There exists a free ultrafilter on X.

Proof. Follows directly from 2.22 and 2.23.

Lemma 2.25:

Every ultrafilter on a non-empty finite set X converges to a point of X.

Proof. In the case of a discrete set, the ultrafilter converges against an element

if the singleton set containing this element is contained inside of the ultrafilter.

Assume the cardinality of X is 1. Then the claim follows directly by the definition
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of the ultrafilter. Now assume that the Lemma is true for a set with cardinality n ∈

N and let X be a set with cardinality n+1 and additionally let F be an ultrafilter

on X. Write X = {1, . . . , n}∪{n+1}. By Theorem 2.18 either {n+1} ∈ F which

ends the proof by the definition of convergence of an ultrafilter or {1, . . . , n} ∈ F

which ends the proof by the inductive assumption.

2.1.3 Uniform spaces

Definition 2.26:

Let X be a set and let A,B ⊆ X × X be realtions on X. Define the following

other relations on X

• A−1 := {(a2, a1) : (a1, a2) ∈ A},

• A ◦B := {(a, b) : ∃c ∈ X : (a, c) ∈ A ∧ (c, b) ∈ B}.

Additionally, define A2 := A ◦ A. ♠

So far, we have discussed a generalized concept of convergence in general topological

spaces. In the analysis of topological groups, we also need the a generalized concept

of completness of a space in terms of filters. This means a general notion of cauchy

sequences is needed called cauchy filters. It will also be possible to say that a space

is complete similiar to the metric case using this new notion.

Firstly, we will define a structure that arises naturally in the analysis of topological

groups and is also compatible with filters and cauchy filters.

Definition 2.27:

LetX be a set. A non-empty subset U ⊆ P(X×X) is called a uniform structure

on X if

1. U is a filter,

2. U ∈ U : {(x, x) : x ∈ X} = ∆X ⊆ U ,

3. U ∈ U : U−1 ∈ U ,

4. U ∈ U∃V ∈ U : V 2 ⊆ U .

The elements of the uniform structure are called entourages. Let E ∈ U and let

x, y ∈ X. The points x and y are called E-close if (x, y) ∈ E. Similiarly a subset

A ⊆ X is called E-small if A× A ⊆ E.
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Let X and Y be uniform spaces with uniform structures UX and UY . A map

f : X → Y is called uniformly continuous if for each W ∈ UY there is V ∈ UX

such that

(f × f)(V ) ⊆ W

where

(f × f) : X ×X → Y × Y, (x1, x2) 7→ (f(x1), f(x2)).

A set B ⊆ X × X is called fundamental system of neighborhoods of the

uniform structure of X if every entourage E of X contains a set B ∈ B. A non-

empty fundamental system of neighborhoods is a filter basis for a uniform structure

on X.

Let A ⊆ X be a subset of X. Then the set

UA := {E ∩ (A× A) : E ∈ UX}

is a uniform structure on A induced by the uniform structure on X. ♠

The definition of uniform structures generalize metric spaces in a similiar sense

that filter convergence generalizes convergence in metric spaces to a broader range

of topological spaces. The axiom 2 of a uniform space reflects the fact that every

point should be close to itself with respect to every entourage. This is similiar

to the metric case, where the distance from a point to itself should be 0. In the

case of uniform spaces, this condition is more general because we can have uniform

spaces that are not Hausdorff. Axiom 3 of a uniform space is the equivalent to

the axiom of symmetry a metric has to fulfill and axiom 4 is the equivalent to the

triangle inequality.

A uniform space comes naturally equipped with a topology, that is induced by

the uniformity of the space. This can easily be seen when considering a uniform

space X with uniform structure U . Then we can define a system of neighborhoods

NX(x) := {V (x) : V ∈ U}, V (x) := {(x, y) ∈ X ×X : (x, y) ∈ V }

for each point x ∈ X. The inverse is not true in general. But if the uniformity

induces a topology, this topology is unique.
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Theorem 2.28:

Let X be a uniform space with uniformity U . Then this uniformity induces a

unique topology on X.

Proof. See [11, Satz 11.5].

It is important to notice that there is not a one-to-one relation between uniform

structures and the topologies induced by them. There can be multiple different

uniformities that induce the same topology on the underlying space. This is

especially true for topological groups which are equipped with three uniform

structures that arise in a canonical way from the group topology and the group

operation but all induce the same topology, namely the group topology.

Definition & Theorem 2.29:

Let X be a compact topological space. Then the set E(X) defined as

E(X) := NX×X(∆X)

is a uniform structure on X which naturally arises from the topology on X.

Proof. See [2, p. 199f.].

Definition 2.30:

Let X be a uniform space with uniformity U . A filter F ∈ Flt(X) is called cauchy

with respect to the uniform structure U if for each entourage U ∈ U there exists

an element F ∈ F such that F is U -small, i.e., F × F ⊆ U .

The uniform space X is called Raikov-complete (or complete) if every cauchy

filter in X converges to a point in X. ♠

Example 2.31:

Let X be a topological space and let Y be uniform space with uniform structure

UY . Define for every V ∈ UY the following set

W (V ) = {(f, g) ∈ C(X, Y )× C(X, Y ) : ∀x ∈ X : (f(x), g(x)) ∈ V }.

Then the set {W (V ) : V ∈ UY } is a fundamental system of neighborhoods for

the uniform structure of uniform convergence Cu(X, Y ) on the set C(X, Y ) of all

continuous functions form X to Y . This space is Raikov-complete if Y is Raikov-
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complete.

Proof. See [11, p.183ff.].

Lemma 2.32:

Let X and Y be uniform spaces and let f : X → Y be a uniformly continuous map

between them. If F ∈ Flt(X) is cauchy in X then the image filter f(F) is cauchy

in Y .

Proof. Let E ′ be a entourage of Y and define E := (f × f)−1(E ′) which is an

entourage of X. Since F is cauchy in X there exists a filter element F ∈ F such

that F × F ⊆ E. But now it follows that

F × F ⊆ E = (f × f)−1(E ′) ⇒ (f × f)(F × F ) ⊆ (f × f)(E) ⊆ E ′.

We can conclude that f(F) is cauchy in Y because f(F ) ∈ f(F).

2.2 Topological Algebra

Definition 2.33:

Let G be a group with group operation +G and T a topology on the underlying set

of G. Additionally define mul : G × G → G, (g, h) 7→ g ·G h as the multiplication

map of G and inv : G → G, g 7→ g−1 as the inverse map of G. Then G is called a

topological group if both mul and inv are continuous maps with respect to T .

Let X be a set. An action of G on X is a map λ : G×X → X, (g, x) 7→ λ(g, x) =:

g . x that fulfills the following properties

1. ∀g, h ∈ G : h. (g . x) = (h ·G g). x,

2. λ(eG, x) = x for all x ∈ X.

If X is a topological space, then the action of G on X is continuous if λ is a

continuous map. ♠

Example 2.34:

Let X be a compact, Hausdorff topological space. The set Homeo(X) of all

homeomorphism from X to X together with the operation of composition of

functions and taking inverses of functions is a group. It becomes a topological

group when equipped with the compact-open topology.
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Proof. Take f, g ∈ Homeo(X). Since the composition of two continuous functions

is continuous (see [11, Satz 2.20]) and composition of two bijections is again a

bijection, f ◦ g is a continuous bijection. And since the inverses of f and g are

continuous it is even a homeomorphism, which means that f ◦ g ∈ Homeo(X).

Since idX ∈ Homeo(X) it follows that

idX ◦ f = f = f ◦ idX .

This means that idX is the neutral element of the group. Lastely it is clear that

f ◦ f−1 = idX and f−1 ◦ f = idX , so every element has an inverse. Next we

have to show that ◦ and taking function inverses are continuous maps. To this

end assume that W (C,W ) is an open neighborhood of g ◦ f . Firstly we now that

f(C) ⊆ g−1(W ) and that f(C) is a compact set. We can choose for each x ∈ f(C)

a compact neighborhood Vx of x with Vx ⊆ g−1(W ) since X is compact and thus

locally-compact. Since f(C) is compact there exists a finite set F ⊆ f(C) such

that

f(C) ⊆
⋃
f∈F

◦
Vf =: W ′.

Also define the set C ′ :=
⋃
f∈F

Vf which is compact.

So we can conclude that f ∈ W (C,W ′) and g ∈ W (C ′,W ). And since W ′ ⊆ C ′

it follows for all f ′ ∈ W (C,W ′) and g ∈ W (C ′,W ) that

g′ ◦ f ′ ∈ W (C,W ),

and hence W (C,W ′) ◦W (C ′,W ) ⊆ W (C,W ). It follows that ◦ is continuous.

And it is also clear by definition that f−1 ∈ Homeo(X) by definition of a

homeomorphism. Let W (K,U) be an open neighborhood of f−1 with K ⊆ X

compact and U ⊆ X open. Define the closed set A := U c and the open set

V := Kc. Since A is closed in X it follows that A is also compact in X. Also note

that K ∩ f(A) = ∅ since K ⊆ f(U).

Now it follows that

f−1(K) ⊆ U ⇐⇒ K ⊆ f(U) ⇐⇒ f(U)c ⊆ Kc ⇐⇒ f(A) ⊆ V,
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hence f ∈ W (A, V ). Furthermore, for each g ∈ W (A, V ) it holds that

g(A) ⊆ V ⇐⇒ V c ⊆ g(A)c ⇐⇒ K ⊆ g(U) ⇐⇒ g−1(K) ⊆ U

and thus we get g−1 ∈ W (K,U). We can conclude that W (A, V )−1 ⊆ W (K,U)

which means that taking inverses is continuous.

Theorem 2.35:

LetX be a compact, Hausdorff topological space. The topological group Homeo(X)

is Raikov-complete with respect to the two-sided uniformity S of Homeo(X).

Proof. Let F ∈ Flt(X) be a cauchy filter with respect to S. Since the inverse map

is uniformly continuous, the filter F−1 defined as inv(F) is also a cauchy filter.

Since the space C(X,X) contains Homeo(X) and is complete (see 2.31) the filter

limits g := limF and h := limF−1 exist in C(X,X). Now consider

g ◦ h = (limF) ◦ (limF−1) = limF ◦ F−1.

The exchange of function composition and the limit of filters is possible since the

function composition is a jointly continuous map.

Let E0, E ∈ E(X) such that

E−1 = E ∧ E ◦ E ⊆ E0.

Let U := {f ∈ Homeo(X) : ∀x ∈ X : (g(x), f(x)) ∈ E} which is a neighborhood of

g in Homeo(X). By the definition of filter convergence we know that there exists

F ∈ F such that F ⊆ U . Now let (f, f̃) ∈ F × F and observe for all x ∈ X that

(
f(f̃−1(x)), g(f̃−1(x))

)
∈ E ∧

(
g(f̃−1(x)), x

)
∈ E ⇒

(
f(f̃−1(x)), x

)
∈ E0.

The fact that
(
g(f̃−1(x)), x

)
∈ E for all x ∈ X follows by

(
g(x), f̃(x)

)
∈ E for all

x ∈ X and the substitution y = f̃−1(x). We can conclude that F ◦ F ⊆ Ẽ0(idX).

From this is follows that limF ◦ F−1 = idX and thus h = g−1, hence g ∈

Homeo(X).

In every topological group there arise three uniform structures in a natural way

that all induce the group topology.
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Definition 2.36:

Let G be a topological group. Define for each V ∈ N (G) the sets

RV := {(x, y) ∈ G×G : xy−1 ∈ V },

LV := {(x, y) ∈ G×G : x−1y ∈ V }.

Now we can define the right uniform structure R and the left uniform

structure L in the following way

R := {E ⊆ G×G : ∃V ∈ N (G) : RV ⊆ E},

L := {E ⊆ G×G : ∃V ∈ N (G) : LV ⊆ E}.

The two sided uniform structure S on G can now be defined as

S := R ∩ L. ♠

2.2.1 Extreme Amenability

Definition 2.37:

A topological group G is called extremely amenable if every continuous action

of G on a non-empty, compact, Hausdorff space admits a fixed point. ♠

Definition 2.38:

Let X and Y be sets. A step function f : X → Y with finite range induces a finite

partition on X called Pf in the following way

Pf := {f−1({y}) : y ∈ Y }.

This is a well-defined finite partion because of the assumption that f has finite

range. ♠

Lemma 2.39:

Let G be a topological group, then it holds that

• ∀U ∈ N (G)∃V ∈ N (G) : V · V ⊆ U ,

• ∀U ∈ N (G)∃V ∈ N (G) : V −1 ⊆ U ,

• ∀U ∈ N (G)∀g ∈ G∃V ∈ N (G) : gV g−1 ⊆ U .
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Proof. See [11, Satz 16.16].

Definition 2.40:

Let X be a set and let µ : B → [0,∞) be a submeasure on X on the boolean

algebra B ⊆ P(X). Then the set

S(µ,G) := {f : X → G : f µ−measurable ∧ |f(X)| <∞}

for a topological group G is the set of all measurable step functions with finite

range on X and values in G. ♠

Theorem 2.41:

Let G be a topological group and let µ : P(X) ⊇ B → [0,∞) be a submeasure

on X. Then the set of simple functions S(µ,G) together with the operation of

pointwise multiplication

S(µ,G)× S(µ,G) → S(µ,G), (f, g) 7→ f · g

where (f · g)(x) = f(x) · g(x) for x ∈ X and pointwise inverses

S(µ,G) → S(µ,G), f 7→ f−1

where (f−1)(x) = (f(x))−1 for x ∈ X is a topological group with respect to the

topology of convergence in submeasure. A basis element of this topology is given

by

Vε(f) = {h ∈ S(µ,G) : µ({x ∈ X : h(x) /∈ f(x)V }) < ε}

where f ∈ S(µ,G), ε > 0 and V ∈ N (G).

Proof. The fact, that S(µ,G) together with the pointwise multiplication of maps

forms a group follows trivially from the fact that G is a group already. Hence, it

remains to show that the maps mul and inv are continuous with respect to the

group topology.

Let ε ∈ R>0 and let V ∈ N (G). Let (g, h) ∈ S(µ,G) × S(µ,G) and consider
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U := mul−1(Vε(mul(g, h))). Choose Ṽ ∈ N (G) such that Ṽ 2 ⊆ V . Next define

W :=

 ⋂
x∈h(X)

x−1Vxx

 ∩ Ṽ

with Vx ∈ N (G) such that x−1Vxx ⊆ Ṽ for each x ∈ h(X). Since the range of h is

finite, W is an open set containing the identity of G. Let (g̃, h̃) ∈ W ε
2
(g)×W ε

2
(h).

Now it follows that

µ ({x ∈ X : g̃(x) /∈ g(x)W}) < ε

2
∧ µ

({
x ∈ X : h̃(x) /∈ h(x)W

})
<
ε

2

and

µ
({
x ∈ X : g̃(x)h̃(x) /∈ g(x)Wh(x)W

})
= µ

({
x ∈ X : g̃(x)h̃(x) /∈ g(x)h(x)(h(x))−1Wh(x)W

})
≥ µ

({
x ∈ X : g̃(x)h̃(x) /∈ g(x)h(x)Ṽ W

})
≥ µ

({
x ∈ X : g̃(x)h̃(x) /∈ g(x)h(x)Ṽ 2

})
≥ µ

({
x ∈ X : g̃(x)h̃(x) /∈ g(x)h(x)V

})
and since

µ
({
x ∈ X : g̃(x)h̃(x) /∈ g(x)Wh(x)W

})
<
ε

2
+
ε

2
= ε

we get that

µ
({
x ∈ X : g̃(x)h̃(x) /∈ g(x)h(x)V

})
< ε.

Finally we can conclude that mul(W ε
2
(g)×W ε

2
(h)) ⊆ U .

Next consider the set Q defined as

Q =
⋂

y∈f(X)

yQyy
−1

with Qy ∈ N (G) and yQyy
−1 ⊆ V for each y ∈ f(X). Since the range of f is
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finite, Q is a open set containing the identity of G. It follows that

f̃ ∈ inv(Qε(f)) ⇐⇒ ε > µ({x ∈ X : (f̃(x))−1 /∈ f(x)Q})

= µ({x ∈ X : f̃(x) /∈ Q−1(f(x))−1})

= µ({x ∈ X : f̃(x) /∈ (f(x))−1f(x)Q−1(f(x))−1})

≥ µ({x ∈ X : f̃(x) /∈ (f(x))−1V })

which means that f̃ ∈ Vε(inv(f)) and thus inv(Qε(f)) ⊆ Vε(inv(f)).

Lemma 2.42:

Let H be a dense subgroup of a topological group G and let f : H → K be a

homomorphism of H to a Raikov-complete topological group K, then there exists

an extension of f to a continuous homomorphism f̂ : G→ K.

Proof. See [1, Proposition 3.6.12].

Theorem 2.43:

Let G be a topological group, let H ⊆ G be a dense subgroup and let X be

an arbitrary compact, Hausdorff topological space. Then every continuous action

H ↷ X can be extended to a continuous action G↷ X.

Proof. Let λ : H × X → X be a continuous action of H on X. Define the map

φ : H → Homeo(X) as

φ : H → Homeo(X), h 7→ (x 7→ λ(h, x)) .

This map is well-defined since it is easy to show that every map λh = λ(h, ·) : X →

X is a homeomorphism for each h ∈ H.

Claim: The map φ is a continuous homomorphism of topological groups. The

fact that φ is a homomorphism of groups trivially follows from the fact of λ being

a group action. It remains to be shown that the map is continuous. To this end

let K ⊆ X be non-empty and compact and let U ⊆ X be non-empty and open

and define V := λ−1(U) ⊆ H ×X. Let h ∈ φ−1(W (K,U)).

Firstly notice that

∀x ∈ K : (h, x) ∈ V

26



since K is compact and since the map λ is continuous by assumption the set V is

open in H ×X. This means we can choose Wx ∈ Nh(G) and Ox ∈ TX such that

(h, x) ∈ Wx × Ox ⊆ V for each x ∈ K. The sets Ox are an open covering of K.

Hence, we can find a finite subcover (Oxi
)i∈{1,...,n} with n ∈ N. Next define the set

W :=
n⋂

i=1

Wxi

which is an open neighborhood of h in H and define

O :=
n⋃

i=1

Oxi
.

We know that by definition

∀g ∈ W∀i ∈ {1, . . . , n} : λ(g,Oxi
) ⊆ U ⇒ ∀g ∈ W : λ(g,O) ⊆ U

and since K ⊆ O it follows that

∀g ∈ W : λ(g,K) ⊆ U

and thus h ∈ W ⊆ φ−1(W (K,U)). Hence, the claim is proven.

Since H is a dense subgroup of the group G and by 2.35 the group Homeo(X) is

Raikov-complete by 2.42 there exists a continuous extension of φ called φ̂ : G →

Homeo(X). The last step is to prove, that the map

λ̂ : G×X → X, (g, x) 7→ φ̂(g)(x)

is a continuous group action. The fact that this a group action follows trivially

from the fact the φ̂ is a homomorphism of groups.

It remains to show that the group action λ̂ is continuous. To this end let (g, x) ∈

G×X, choose U ∈ Tx with λ̂(g, x) ∈ U .

Now consider V := (φ̂(g))−1(U). This set is open since φ̂(g) is a homeomorphism

and the set contains the point x since φ̂(g)(x) = λ(g, x) ∈ U . The set K := V̄

is compact because it is a closed subset of a compact space. Now take the basis
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element W (K,U) of the compact open topology on Homeo(X) and define

W := φ̂−1(W (K,U)).

Again this set is open since φ̂ is continuous and it contains g. Furthermore it is

true that

∀g̃ ∈ W : λ̂(g̃, K) = φ̂(g̃)(K) ⊆ U

and since V ⊆ K thus

∀g̃ ∈ W : λ̂(g̃, V ) = φ̂(g̃)(V ) ⊆ U.

We can now conclude that λ̂(W × V ) ⊆ U and since (g, x) ∈ W × V ∈ TG×X the

map λ̂ is continuous.

2.3 Algebraic Topology

In the following section let Y be a topological space and let X be a metric space

with metric dX .

Definition 2.44:

Let X and Y be topological spaces. The continuous maps f, g : X → Y are

called homotopy equivalent or homotopic if there exists a continuous map

F : X × I → Y where I = [0, 1] with the following property

F (0, x) = f(x) and F (1, x) = g(x).

Define the relation ≃ on C(X, Y ) as

f ≃ g : ⇐⇒ f and g are homotopy equivalent.

This relation is an equivalence relation (see [7, Lemma 51.1]).

The continuous function f is called a homotopy equivalence if there exists a

h ∈ C(Y,X) such that

h ◦ f ≃ idX ∧ f ◦ h ≃ idY .

The two spaces X and Y are homotopy equivalent (X ≃ Y ) if there exists a
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homotopy equivalence h ∈ C(X, Y ) between them.

A space is called contractible if it is homotopy equivalent to a one point space.

♠

Lemma 2.45:

Let X and Y be topological spaces, then

X ∼= Y ⇒ X ≃ Y.

Proof. Let ψ : X → Y be a homeomorphism. Then it follows that ψ ◦ ψ−1 ≃ idY

and ψ–1 ◦ ψ ≃ idX .
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3 Simplicial complexes and singular homology

3.1 Abstract simplicial complexes

Definition 3.1:

Let X be a non-empty set. Then a collection K ⊆ Pfin(X) of finite subsets of X

is called a simplicial complex of X if

•
⋃
K = X,

• ∀σ ∈ K : τ ⊆ σ ⇒ τ ∈ K.

The elements of the set V (K) :=
⋃

K are the vertices of K and elements of K

itself are the simplices. Given a simplex σ ∈ K then the sets σ \ {x} for x ∈ σ

are called the faces of σ.

Let σ ∈ K then dim σ = |σ| − 1 is the dimension of σ. The dimension of K is

dimK = max{dimσ : σ ∈ K}.

Let Y be another non-empty set and L be a simplicial complex on Y . A map

f : V (K) → V (L) is called a simplicial map if

∀σ ∈ K : f(σ) ∈ L.

If f is bijective and f−1 : L → K is a simplicial map then f is an combinatorial

isomorphism. If ι : L → K is an inclusion, we say that L is a subcomplex of K

if ι is a simplicial map. ♠

Example 3.2:

Let n ∈ N+ then Kn defined as

Kn := P<n([n])

is a sequence of simplicial complexes. For example K2 = {∅, {0}, {1}}.

Definition 3.3:

Let X be a set, H be a group and K be a simplicial complex on X. If there is a

group action λ : H ×X → X of H on X such that λ(h, ·) : X → X is a simplicial
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map for each h ∈ H then the complex K is an H-complex. ♠

Definition 3.4:

A poset (partially ordered set) is a pair (P,⪯) where P is a non-empty set and ⪯

is a binary relation on P which has the following properties:

1. Reflexivity : ∀x ∈ P : x ⪯ x,

2. Antisymmetry : ∀x, y ∈ P : (x ⪯ y ∧ y ⪯ x) ⇒ (x = y),

3. Transitivity : ∀x, y, z ∈ P : (x ⪯ y ∧ y ⪯ z) ⇒ (x ⪯ z).

A chain in P is a subset C ⊆ P which is totally ordered, i.e.

∀x, y ∈ C : x ⪯ y ∨ y ⪯ x. ♠

Example 3.5:

If X is a non-empty set then the pair (P(X),⊆) forms a poset.

The last example establishes the following definition: If X is a non-empty family

of sets then P (X) := (X,⊆) is the poset generated by X. The elements of X are

the elements of the poset and the binary relation of set inclusion is the partial

order.

Definition 3.6:

Let K be an abstract simplicial complex. The barycentric subdivision sd(K)

of K is the abstract simplicial complex with K as the set of vertices and all chains

in P (K) as simplices. ♠

Theorem 3.7:

IfK is a abstract simplicial complex, then sd(K) is a well-defined abstract simplicial

complex.

Proof. Since the singleton sets {σ} for σ ∈ K are totally ordered we have that

∀σ ∈ K : {σ} ∈ sd(K)

and thus
⋃

sd(K) = K. Let σ ∈ sd(K). Now let τ ⊆ σ. Since σ was totally

ordered τ is also totally ordered. This means that τ ∈ K.
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We need a way to turn an abstract simplicial complex into a geometric structure

such that it can be analyzed with the tools provided by algebraic topology. This

means that there should be a map from the simplices of the abstract complex to

n-dimensional euclidian space. This map is called the geometric realization of

the abstract simplicial complex which maps it to a geometric simplicial complex.

These geometric complexes consist of polyhedra. They are constructed by “gluing”

together points, straight line segments, polyhedra and their higher dimensional

generalizations. It will be clear that these two types of objects internally encode

the same combinatorical structure.

Definition 3.8:

Let n, k ∈ N and let x0, x1, . . . , xk ∈ Rn. The vectors are called affinely independent

if

∀αj ∈ R :
k∑

i=0

αi = 0 ∧
k∑

i=0

αixi = 0 ⇒ α0 = α1 = . . . = αk = 0,

with j = 0, 1, . . . , k. ♠

Definition 3.9:

Let n, k ∈ N and let x0, x1, . . . , xk ∈ Rn. The convex hull of the vectors xi is

co(A) = co(x0, x1, . . . , xk) := {t0x0 + t1x1 + · · ·+ tkxk : ti ∈ [0, 1],
k∑

i=0

ti = 1}

where A = {xi : i ∈ [k + 1]}. ♠

Remark 3.10:

Let d ∈ N and A,B ⊆ Rd. If A ∪B affinely independent, then

(coA) ∩ (coB) = co(A ∩B).

Proof. The inclusion co(A ∩B) ⊆ coA ∩ coB is trivial.

For the other inclusion take x ∈ co(A) ∩ co(B). This means that there exist to

representations of x of the form

x =
m∑
i=1

αiai,

x =
n∑

j=1

βjbj,
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for m,n ∈ N, ai ∈ A for all i = 1, . . . ,m with
m∑
i=1

αi = 1 and bj ∈ B for all

j = 1, . . . , n with
n∑

j=1

βj = 1. Now subtract both representations of x. It follows

that
m∑
i=1

αiai −
n∑

j=1

βjbj = 0 ∧
m∑
i=1

αi −
n∑

j=1

βj = 0.

Since A ∪ B are affinely indepent this means that either all coefficients are zero

or there exist indices for which ai = bj. Since the sum of the coefficients ai and

bj sum up to one the case that all coefficients are zero is not possible and thus

we have that both convex combinations of x can only contain points which lie in

A ∩B. So x ∈ co(A ∩B).

Affine independence of the vectors ensures that the convex hull of vectors is not

degenerated. For example it is expected that the convex hull of three vectors in

R2 is a triangle. But in the degenerate case that the points are all the same or the

points lie in a straight line, this is not true. When it is assumed that the points

are affinely independent, these cases are excluded.

Definition 3.11:

A geometric realization of an abstract simplicial complex K is a map

f : V (K) → Rd

with d ∈ N such that

1. ∀σ ∈ K : f(σ) affinely independent,

2. ∀σ1, σ2 ∈ K : (cof(σ1)) ∩ (cof(σ2)) = cof(σ1 ∩ σ2).

Given a geometric realization f for K, then ∥K∥f = f(K). The symbol ∥K∥ refers

the an arbitrary geometric realization of K in the smallest dimension d that is

possible. Let x ∈ ∥K∥f . There exist maps αv : ∥K∥f → [0, 1] for each v ∈ V (K)

such that

x =
∑

v∈V (K)

αv(x) · f(vi),
∑

v∈V (K)

αv(x) = 1,

The αv(x) are called the barycentric coordinates of x. ♠

To show that ∥K∥ for an arbitrary simplicial complex is well-defined, we need the

following theorem.
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Theorem 3.12:

Let K be a simplicial complex with dimK = n ∈ N. Then there exists a geometric

realization f : V (K) → R2d+1.

Proof. This is a direct consequence of [6, Lemma 5.1.1].

Lemma 3.13:

Let K be a simplicial complex. Then

∥K∥ ≃ ∥sd(K)∥.

Proof. See [8, p. 84].

0 2

1

K
0 2

1

01 12

02
sd(K)

01 12

02

123
sd

Figure 1: Barycentric subdivision of the 2-dimensional simplex.

Definition 3.14:

Let d ∈ Nd and let f : V (K) → Rd. The affine extension ∥f∥ of this function is

defined as

∥f∥ : ∥K∥ → Rd, x 7→
∑

v∈V (K)

αv(x)f(v).

♠

Example 3.15:

Take the sequence of simplicial complexes Kn from Example 3.2. A possible

geometric realization of these complexes is

fn : V (Kn) → Rn, k 7→ ek

where ek for k ∈ [n] is the k + 1-th canonical basis vector of Rn. This sequence of

complexes have the property that there is a homeomorphism ψ : ∥Kn∥fn → Sn−1.
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Definition 3.16:

Let K and L be abstract simplicial complexes. The join of these complexes is

defined as

K ⋆ L := {σ ⊔ τ : σ ∈ K, τ ∈ L}.

The n-fold join ⋆i∈[n]Ki is defined by

⋆n−1
i=0 Ki = ⋆i∈[n]Ki := {σ0 ⊔ · · · ⊔ σn−1 : ∀i ∈ [n] : σi ∈ Ki}.

Since the disjoint union is associative up to an isomorphism, this operation is well-

defined. The special case Cone(K) = K ⋆P≤1({∆}) is the cone of K with a cone

point ∆. Given a finite subsequence of simplical subcomplexes (Li)i∈[n] of K define

Cone(K, (Li)i∈[n]) := K ∪ Cone(L1) ∪ · · · ∪ Cone(Ln−1)

for n ∈ N. The cone points are distinct for each cone.

Now define basepoints vk ∈ V (K), vl ∈ V (L) of the two simplicial complexes. The

wedge of K with L is defined as

K ∨ L := K ⊔ L⧸∼

where ∼ is the equivalence relation, that identifies the basepoints. The n-fold

wedge
∨n−1

i=0 Ki =
∨

i∈[n]
Ki for simplicial complexes K is the n-fold disjoint union

with the same equivalence relation. ♠

Example 3.17:

LetK = L with V (K) = [3] be the two-dimensional simplex (a triangle in the plain)

and choose the basepoints 1 ∈ V (K), 1 ∈ V (L). Then a geometric realization of

the wedge K ∨ L is depicted in the Figure 2.

0 2

1

K 0 2

1

L

0

2

1

2

0K ∨ L

∨

Figure 2: Examples of the wedge of simplicial complexes.
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Lemma 3.18:

Let K be a simplicial complex and let (Li)i∈[p] be a sequence of subcomplexes of

K for p ∈ N. If Li is empty or contractible for each i ∈ [p] then

∥Cone(K, (Li)i∈[p])∥ ≃ ∥K∥.

Proof. We know that each Cone(Li) for i ∈ [p] is contractible. So there is a

homotopy equivalence to a one point space. Choose a point in ∥K∥ to which

Cone(Li) is contracted to for each Li. Then we start with i = 1 and can define

a homotopy equivalence that keeps ∥K∥ fixed and contracts the cone over Li to

the chosen point in ∥K∥. This shows that ∥K ∪Cone(L0)∥ ≃ ∥K∥. The statement

follows by induction on i.

Now consider the complexesK = P≤1({0, 1}) and L = P≤1({2, 3}). The geometric

realization of the join K ⋆L of these complexes can be seen in Figure 3. From the

figure it becomese apperent that ∥K ⋆ L∥ is homeomorphic to S1.

0 1

K

2 3

L

0

3

2

1K ⋆ L

⋆

Figure 3: Example of the join of simplicial complexes.

The fact that the join of two points with two points results in a simplicial complex

that has a geometric realization that is homeomorphic to S1 does not just work

for dimension one. This fact holds more generally for the n-fold join of 2-point

discrete simplicial complexes.

Lemma 3.19:

Let Kn := P≤1({(−1, n), (1, n)}) for n ∈ N+, then

∥∥⋆k
i=1Ki

∥∥ ∼= Sk−1.
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Proof. A geometric realization of this complex is as follows

f : V (⋆k
i=1Ki) → Rn, (x, i) 7→ x · ei

which means that the vertices get mapped to the canonical basis vectors of Rn

and their negations. This geometric realization forms the boundary of the n-

crosspolytope3 for each n ∈ N+. It is homeomorphic to the sphere by the homeomorphism

φ : Sn → ∂P n, x 7→ ∥x∥−1
1 · x.

Figure 4: Cross polytopes in dimensions one, two and three.

3.2 Homology Theory

Now a very important tool in algebraic topology is introduced, namely Homology

Theory of topological spaces. For the basic definitions from category theory and

homological algebra needed in the following see [12].

Construction 3.20:

Let S be a finite set. Define

A(S) := {f ∈ ZS : |imf | <∞}

be maps from S to Z with finite image. A(S) is an abelian group together with

the operation of pointwise addition of maps. Then the set

{1x : x ∈ S} ⊆ A(S)

3This n-crosspolytope is {(x1, . . . , xn) ∈ Rn : |x1|+ · · ·+ |xn| ≤ 1}. The boundary ∂Pn of the
polytope is formed by all points with 1-norm equal to 1.
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forms a basis of the abelian groupA(S). Let T be another set. For a map φ : S → T

define the map A(T ) as

A(φ) : A(S) → A(T ), f 7→
∑
x∈S

f(x) · 1φ(x).

This map is a homomorphisms of abelian groups.

Proof. The fact that A(S) is abelian follows from the fact that the group Z is

abelian and thus the pointwise addition is associative and commutative, the neutral

element is the constant 0 function and the inverse of an element f ∈ A(S) is defined

as f−1(s) = −f(s) for s ∈ S.

Now let f ∈ A(S) and consider the function

f̃ : S → Z, s 7→
∑
x∈S

αx1x(s)

with αx = f(x) for all x ∈ S. Let s ∈ S. It follows that

f̃(s) =
∑
x∈S

αx1x(s) = αs = f(s).

Now let f, g ∈ A(S).

A(φ)(f + g−1) =
∑
x∈S

(f + g−1)(x) · 1φ(x)

=
∑
x∈S

(f(x)− g(x))) · 1φ(x)

=
∑
x∈S

f(x) · 1φ(x) + (−g(x)) · 1φ(x)

=
∑
x∈S

f(x) · 1φ(x) +
∑
x∈S

(−g(x)) · 1φ(x)

= A(φ)(f) + A(φ)(g)−1.

Since the collection of indicator functions is a basis of A(S) it is a convention to

write elements of A(S) as formal linear combinations of elements of the generating
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set S. This means the group A(S) can also be represented as

A(S) =

{
k∑

i=1

rixi : k ∈ N, ∀i ∈ {1, . . . , k} : xi ∈ S, ri ∈ Z

}
.

Theorem 3.21:

Let S be a set and let B be an abelian group. Then

Φ: Ab(A(S), B) → BS, φ 7→ φ ◦ ιS

is a bijection where ιS : S → A(S), s 7→ 1s.

Proof. The map Φ is a homomorphism of abelian groups.

To this end let φ, ψ ∈ Ab. The claim follows from the fact that φ and ψ are

homomorphisms and

(φ+ ψ)(1x) = φ(1x) + ψ(1x).

Let φ ∈ Ab(A(S), B) and assume that φ ◦ ιS = 0. Then it holds that

φ(f) = φ

(∑
x∈S

f(x) · 1s

)
=
∑
x∈S

f(x) · φ(1s)

=
∑
x∈S

f(x) · 0 = 0

for all f ∈ A(S) and thus φ = 0. This means kerΦ = {0}. Now let ψ ∈ BS. Then

the map

ξ : A(S) → B, f 7→
∑
x∈S

f(x)ψ(x)

is a homomorphism by

ξ(f + g) = ξ

(∑
x∈S

(f + g)(x)1x

)
=
∑
x∈S

(f + g)ψ(x)

=
∑
x∈S

f(x)ψ(x) +
∑
x∈S

g(x)ψ(x) = ξ(f) + ξ(g).
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And now it follows that Φ(ξ) = (ξ ◦ ιS)(x) = 1x(x) ·ψ(x) = ψ(x) for all x ∈ S and

hence Φ(ξ) = ψ.

The Theorem now tells us that any function from X to an abelian group B can

be extended into a function from A(X) to B in a unique way. This may become

clear looking at the commutative diagram in Figure 5.

X

A(X) B

ιX
φ

∃!φ̂

Figure 5: Commutative diagram showing the statement of Theorem 3.21
.

Definition 3.22:

Let n ∈ N. The geometric n-simplex ∆n is defined as

∆n := co{e0, . . . , en} ⊆ Rn+1

where ei is the i-th canonical basis vector of Rn+1 for i = 0, . . . , n. For all i =

0, . . . , n define the i-th face map as

di : ∆n−1 → ∆n, (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

Notice that imdi ⊆ ∆n. The image of di is called the i-th face of ∆n. ♠

Definition 3.23:

Let X be a topological space and let n ∈ N. A singular n-simplex in X is a

continuous map σ ∈ C(∆n, X). Now the singular n-chain group of X is defined

as Cn(X) := A(C(∆n, X)). An element σ ∈ Cn(X) is called a singular n-chain in

X. The map

∂n : Cn(X) → Cn−1(X), σ 7→
n∑

i=0

(−1)i(σ ◦ di)

is called the n-th boundary map for n ∈ N+. It is a homomorphisms of abelian

groups. For n < 1 define ∂n as the zero map as well as all Cn as trivial abelian

groups.

If Y is another topological space and f ∈ C(X, Y ) then Cn(f) : Cn(X) → Cn(Y )
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defined on the generators σ ∈ Cn(X) as

C(f)(σ) = f ◦ σ.

This map is a homomorphism of abelian groups. ♠

Lemma 3.24:

The composition ∂n ◦ ∂n+1 = 0 for all n ∈ N.

Proof. See [14, Lemma 8.7].

The Lemma above is the so called Fundamental Theorem of Homology Theory.

It allows for the following definition.

Definition 3.25:

Let X be a topological space, then

C•(X) := ((Cn(X))n∈Z), (∂n)n∈Z)

with

Cn(X) = {0}, ∂n := 0

for n ∈ Z \ N is a chain complex. ♠

Lemma 3.26:

Let X, Y be topological spaces and f ∈ C(X, Y ), then

∀n ∈ N : ∂n ◦ Cn(f) = Cn−1(f) ◦ ∂n.

Proof. Let n ∈ N+ and let σ ∈ C(∆n, X) then

∂n(Cn(f)(σ)) = ∂n(f ◦ σ)

=
n∑

i=0

(−1)if ◦ σ ◦ di

=
n∑

i=0

(−1)iCn−1(f)(σ ◦ di)

= Cn−1(f)(
n∑

i=0

(−1)i(σ ◦ di))

= Cn−1(f)(∂n(σ)).
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From the previous lemma it is clear that C•(f) := (Cn(f))n∈Z with Cn(f) = 0 for

n < 0 is a homomorphism between chain complexes C•(X) and C•(Y ).

Lemma 3.27:

C• : Top → C(Ab) is a functor.

Proof. Let X be a topological space and let n ∈ N, then

Cn(idX)(σ) = idX ◦ σ = σ = idCn(X)(σ)

for all σ ∈ C(∆n, X) and hence Cn(idX) = idCn(X). For n < 0 this is trivial.

Let Y, Z be topological spaces and f ∈ C(X, Y ), g ∈ C(Y, Z), then for n ∈ N it

follows that

Cn(g ◦ f)(σ) = g ◦ f ◦ σ = Cn(g)(f ◦ σ) = (Cn(g) ◦ Cn(f))(σ)

for all σ ∈ C(∆n, X) and thus Cn(g ◦ f) = Cn(g) ◦ Cn(f). The case for n < 0 is

trivial.

Theorem 3.28:

Let n ∈ N. Then

Hn : Top → Ab

defined by

Hn(X) := Hn(C•(X)), Hn(f) := Hn(C•(f))

for a topological spaces X and Y and f ∈ C(X, Y ) is called the n-th singular

homology group and is a functor. The definition of this functor is part of homological

algebra and can be found in [12, p. 329f.].

Proof. Follows from the fact that the composition of functors is a functor and

Lemma 3.27.

Theorem 3.29:

Let X and Y be topological spaces. Then if f, g ∈ C(X, Y ) are homotopic maps

it follows that

Hn(f) = Hn(g)

for all n ∈ N.

42



Proof. See [4, p. 112f].

Corollary 3.30:

Let X and Y be topological spaces and f ∈ C(X, Y ) is a homotopy equivalence

between them, then Hn(f) : Hn(X) → Hn(Y ) is an isomorphism for all n ∈ Z.

Proof. This follows directly from Theorem 3.29.

Example 3.31:

Take a topological space X. Then H0(X) ∼= Zn where n ∈ N is the number of

path-connected components in X.

In classical homology theory, the 0-th homology group of a space counts its

connected components, which can sometimes lead to complications in certain

results. For example, the homology of a single-point space is typically H0 = Z,

but this does not always align well with other homological computations.

To address this, we introduce reduced homology groups, denoted H̃n(X).

These groups are defined such that:

H̃n(X) = Hn(X) for all n ≥ 1, and H̃0(X)⊕ Z = H0(X).

This adjustment ensures that the reduced homology of a single-point space is

trivial, H̃0 = 0, rather than Z, simplifying various theoretical results. A detailed

derivation of reduced homology can be found in [4, p. 110].

Beyond using integer coefficients, homology can also be defined with coefficients

in other groups, such as Zp for a prime p. The fundamental ideas remain the

same, with slight modifications in proofs and derivations. Since this thesis focuses

on homology over Zp, we refer to [4, p. 153ff.] for a comprehensive discussion of

homology with different coefficients.

Definition 3.32:

Let Gα be an abelian group for each α in an arbitrary index set I. Then the

external direct sum of the groups is defined as

⊕
α∈I

Gα = {(gα)α∈I : gα ∈ Gα ∧ gα ̸= eGα for only finitely many indices α ∈ I}.
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This is an abelian group with the operation

(g)α∈I · (h)α∈I = (gα ·Gα hα)α∈I .

If fα is a homomorphism with

fα : Gα → H

for each α ∈ I where H is an abelian group then

⊕
α∈I

fα :
⊕
α∈I

Gα → H, (g)α∈I 7→
∑
α∈I

fα(gα)

is a well-defined homomorphism since only finitely many summands are non-trivial.

♠

Definition 3.33:

Let X be a topolgical space and let A ⊆ X be a non-empty closed subspace, that

is a deformation retract of a neighborhood in X. Then (X,A) is a good pair. ♠

Lemma 3.34:

Let Xα be a sequence of topological spaces with basepoints xα ∈ Xα and let

ια : Xα →
∨
α∈I

Xα for α ∈ I where I is an arbitrary index set such that (Xα, xα)

are good. Then it holds that the maps ια induce an isomorphism

⊕
α∈I

Hn(ια) :
⊕
α∈I

H̃n(Xα) → H̃n

(∨
α∈I

Xα

)
.

Proof. See [4, Corollary 2.25].

Proofs in the later sections will focus solely on reasoning about homology groups.

While there exists a dualized concept known as cohomology, where the n-th

cohomology group is denoted by Hn(X;G), where G is a module over a field, its

development is not necessary for this thesis.

In categorical terms, cohomology arises from a dualization of homology, which

replaces the homology groups in the chain complex with Grp(Hn(X), G), where

G ∈ Ab is an abelian group. However, there is no need to introduce cohomology

explicitly or utilize it in later proofs due to the following fundamental result:
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Alexander Duality, which establishes a connection between homology and

cohomology groups.

Theorem 3.35:

Let n ∈ N. If A ⊆ Sn is a compact and non-empty subspace and (Sn, A) is

triangulable4 then

H̃k(A) ∼= H̃n−k−1(Sn \ A)

for all k ∈ N.

Proof. See [8, Theorem 71.1].

Definition 3.36:

Let (Gn)n∈N be a sequence of abelian groups and let (φn)n∈N be a sequence of

homomorphisms such that

φn : Gn → Gn−1

for n ∈ N+ and φ0 : G0 → 0. The sequence is called exact if

imφn+1 = kerφn.

for all n ∈ N. An exact sequence of the form

0 → A→ B → C → 0

is called a short exact sequence. ♠

A second important tool linking homology and cohomology groups is theUniversal

Coefficient Theorem. An in-depth derivation of it can be found in [4, Chapter

3.1]. For the purpose of this thesis, we only need the following corollary from the

theorem.

Corollary 3.37:

Let X be a topological space. Let C•(X;R) be a chain complex of free abelian

groups and let R be a field and Hn(X;R) the corresponding homology groups with

H̃n(X;R) ∼= 0 for 0 ≤ n ≤ k ∈ N. Then the cohomology groups are all trivial up

to k.

4This means that A ⊆ Sn and that there exists a triangulation K of Sn and a subcomplex
K0 ⊆ K with a homeomorphism (K,K0) → (Sn, A).
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We will use this Corollary in the case R = G = Zp. This works since Zp is a field

and a free Zp-module over itself in the case p ∈ P.

3.3 Theorem of Mayer-Vietoris

Often we can calculate the homology of simple subspaces of a larger space and want

to deduce the homology of the larger space from them. This can be accomplished

with the Mayer-Vietoris-Sequence which is a homological version of the Van

Kampen-Theorem (see [4, Chapter 1.2]).

Theorem 3.38:

Let X be a topological space and let A,B ⊆ X subspaces of X such that

X = A ∪B, A ∩B ̸= ∅.

The Mayer-Vietoris-Sequence

. . .→ Hn(A ∩B)
Φ→ Hn(A)⊕Hn(B)

Ψ→ Hn(A ∪B)
∂→ Hn−1(A ∩B) → . . .→ 0

is an exact sequence where the mappings Φ and Ψ are defined as

Φ: Hn(A ∩B) → Hn(A)⊕Hn(B), z +Bn(A ∩B) 7→ (z +Bn(A),−z +Bn(B)),

Ψ: Hn(A)⊕Hn(B) → Hn(A ∪B), (z1 +Bn(A), z2 +Bn(B)) 7→ (z1 + z2) +Bn(A ∪B).

Proof. For a detailed derivation of this Theorem look at [4, p. 149].

Example 3.39:

The homology groups of the n-dimensional sphere Sn are as follows

H̃k(Sn) ∼=

0, n ̸= k,

Z, n = k,

for k ∈ Z.

Proof. Let A be the upper hemisphere and B the lower hemisphere of Sn. Then
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A ∩B = Sn−1. Consider the Mayer-Vietoris sequence of this decomposition

. . .
∂′
→ Hk(Sn−1) → Hk(A)⊕Hk(B) → Hk(Sn)

∂→ Hk−1(Sn−1) → . . .→ 0.

Since A and B are contractible it follows that Hn(A) ∼= Hn(B) ∼= 0 for all n ∈ N .

This means that

0 = imΨ = ker ∂k

Hk(Sn−1) = kerΦ = im∂n+1.

We get that the maps ∂ : Hk(Sn) → Hk−1(Sn−1) are isomorphisms. And thus with

the fact that H1(S1) ∼= Z the claim is proven by induction on k.5

5The fact that the first homology group of S1 is isomorphic to Z can easily be proven with
another type of homology, namely simplicial homology [4, p. 106]. And since the singular
and simplicial homology groups are isomorphic for triangulable spaces it can be deduced that
H1(S1) ∼= Z also in the singular case. A triangulation of S1 is the circle graph with three vertices.
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4 L0-Groups, connection between extreme amenability

and chromatic numbers

In this chapter, we want to establish a connection between the extreme amenability

of a L0-group and the boundedness of the chromatic numbers of a sequence of

graphs. These graphs will be constructed using the structure of the L0-groups.

Firstly we have to define what is meant by the symbol L0(µ,G). Some authors

already consider the set of simple functions from Defintion 2.40 together with the

operation ⋆ defined in Theorem 2.41 as the topological group L0(µ,G). In other

works such as [15] this topological group is the Raikov completion (see [1, Chapter

3.6]) of S(µ,G). In this case the topological group S(µ,G) would be a dense

subgroup of L0(µ,G).

When talking about extreme amenability of topological groups it is sufficient to

prove it for dense subgroups because of the following Theorem.

Theorem 4.1:

Let G be a topological group and let H ⊆ G be a dense subgroup. Then H is

extremely amenable if and only if G is extremely amenable.

Proof. Let g ∈ G and let X be a compact space. Take a continuous action

G×X → X, (g, x) 7→ g . x.

This action restricts to a continous action on H. Since H is dense in G, by

Theorem 2.20 we can find G ∈ Flt(H) that converges to g. Now let F ∈ UFlt(X)

with G ⊆ F . This exists due to Theorem 2.23 and this filter still converges to

g. Furthermore since H is extremely amenable there exists x0 ∈ X such that

h. x0 = x0. Now consider the map f defined as

f : G→ X, g 7→ g . x0.

It follows that

∀F ∈ F : f(F ) = {x0}
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and thus

g . x0 = f(g) = lim
F→F

f(F ) = x0.

The exchange of function application and limit is possible since f is continuous

by definition. Then for the other implication assume that the subgroup is not

extremely amenable H. This means there exists an continuous action H×X → X

which admits no fixed point. It is possible to extend the action in a continuous

way to the whole group G like above. Then we have constructed a continuous

action on G with no fixed point.

This result allows us in the main results of the thesis to only talk about the simple

function because the extreme amenability property is inherited by L0(µ,G) from

them.

In the following the symbol 1̄ represents the constant function which sends each

element of X to 1 in the set S(µ,Z).

Definition 4.2:

Let X be a set and µ be a submeasure on X defined on a subalgebra B ⊆ P(X).

Addtionally let ε ∈ R>0 and P ∈ Π(B) then define the graph Γ(ε,P , µ) in the

following way

• the vertex set of Γ(ε,P , µ) is ZP ,

• the vertices f, g ∈ ZP are connected in Γ(ε,P , µ) if

µ({P ∈ P : f(P ) ̸= g(P ) + 1}) < ε. ♠

Lemma 4.3:

LetX be a set and let µ be a submeasure on a subalgebra B ⊆ P(X). Additionally,

let P ∈ Π(B) and ε ∈ R>0 then for f, g ∈ ZP with f − g ∈ 1̄ + Vε it follows that f

and g are connected in Γ(ε,P , µ) by an edge.

Proof.

f − g ∈ 1̄ + Vε ⇐⇒ µ({x ∈ X : (f − g)(x) ̸= 1}) < ε

⇐⇒ µ({x ∈ X : f(x) ̸= g(x) + 1}) < ε

⇐⇒ µ
(⋃

{A ∈ P : f(A) ̸= g(A) + 1}
)
< ε.
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Theorem 4.4 (Sabok, [13, Lemma 5]):

Let X be a set, µ : B → [0,∞) a diffuse submeasure on X where B is a subalgebra

of P(X). Then the following are equivalent:

1. S(µ,G) is extremely amenable for every non-trivial, Hausdorff, abelian topological

group G,

2. ∀ε > 0: sup
P∈Π(B)

χ(Γ(ε,P , µ)) = ∞.

Proof. (1) ⇒ (2): Let ε ∈ R>0 and assume that there exists d ∈ N such that

∀P ∈ Π(B) : χ(Γ(ε,P , µ)) ≤ d.

Given this assumption we claim that the the group S(µ,Z) is not extremely

amenable. To this end choose a coloring of Γ(ε,P , µ) called cP : ZP → {1, . . . , d}

for every P ∈ Π(B). Now the goal is to define a coloring on the whole set S(µ,Z).

To this end define the family of sets

A := {{P ∈ Π(X) : P0 ≼ P} : P0 ∈ Π(X)}.

This is a well-defined filter basis by Theorem A.5 and Lemma 2.15. From Theorem

2.23 it follows that there is an ultrafilter U containing the filter F(A). Let f ∈

S(µ,Z). Define fP ∈ ZP for all finite partitions P refining the partion Pf as

fP(A) = k ⇐⇒ A ⊆ f−1({k}).

This functions is well-defined because of the definition of refinment of partitions

and thus also fP ∈ S(µ,Z). Now define a coloring c : S(µ,Z) → {1, . . . , d} of

S(µ,Z) as the limit over the ultrafilter

c(f) := lim
P→U

cP(fP).

Convergence of the limit above is ensured by the fact that it is a limit in a finite and

discrete space and thus the limit has to take one and only one value in {1, . . . , d}.

Let Xi := {f ∈ S(µ,Z) : c(f) = i} for each i = 1, . . . , d which is a cover of S(µ,Z)

and let f, g ∈ ZP . If f−g ∈ Vε(1̄) then by Lemma 4.3 it follows that cP(f) ̸= cP(g).
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In the limit of the ultrafilter U we get Vε(1̄) ∩ (Xi −Xi) and thus Xi −Xi is not

dense at 1̄ for each i = 1, . . . , d. By Pestovs characterization [10, Theorem 3.4.9]

of extreme amenability it follows that S(µ,Z) is not extremely amenable.

(2) ⇒ (1): For the second implication suppose that S(µ,G) is not extremely

amenable. By Pestovs characterization [10, Theorem 3.4.9] we get the existence

of a set S ⊆ S(µ,G) that is big on the left6 such that S(µ,G) ̸= S − S. Let

E ⊆ S(µ,G) finite with an enumeration E = {e1, e2, . . . , en} with n ∈ N such

that S(µ,G) = E + S and let f ∈ S(µ,G) \ S − S. It follows that there exist

W ∈ NG(eG) and ε ∈ R>0 such that

Wε(f) ∩ (S − S) = ∅

since f is not in the closure of S − S. Now let Vε := {h ∈ S(µ,G) : µ({x ∈

X : h(x) ̸= eG}) < ε}. Since eG ∈ W it follows that Vε + f ⊆ Wε(f) and hence

(Vε + f) ∩ (S − S) = ∅.

Define the partition Pf induced by f . Now let P ∈ Π(B) with Pf ≼ P and let

k ∈ ZP . Define Si := ei + S for i = 1, . . . , n and

gk : X → G, x 7→ k(ιP(x))f(x)

which is an element of S(µ,G). Now we can define the mapping c as

c : ZP → {1, . . . , d}, k 7→ i ⇐⇒ gk ∈ Si.

Claim: The mapping c is a coloring of the graph Γ(ε,P , µ). To this end suppose

there are two nodes k, l ∈ ZP which are connected and have the same color i ∈

{1, . . . , d}. Let B :=
⋃
{A ∈ P : k(A) ̸= l(A) + 1}. It holds that µ(B) ≤ ε since k

and l are connected in Γ(ε,P , µ). For x ∈ X \B it holds that

gk(x)− gl(x) = k(ιP(x))f(x)− l(ιP(x))f(x) = (k(ιP(x))− l(ιP(x))f(x) = f(x)

6This means that there exists a finite set E ⊆ S(µ,G) such that S(µ,G) = E+S. Additionally
{e+ S : e ∈ E} is a covering of S(µ,G).
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since k(A) = l(A) + 1 for x /∈ B. It follows that

µ({x ∈ X : gk(x)− gl(x) ̸= f(x)}) < ε.

which means gk − gl ∈ f + Vε. Furthermore we have gk, gl ∈ Si because of the

definition of c. Hence gk − gk ∈ (f + Vε) ∩ (Si − Si) . This proves the claim that

c is a coloring of Γ(ε,P , µ) with d colors.
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5 The Borsuk-Ulam Theorem and a generalization

The following section describes the Borsuk-Ulam Theorem and an important generalization

by Volovikov needed to prove the following claim.

Theorem 5.1:

If p ∈ P and n, l ∈ N with n ≥ l such that

d(p− 1) ≤ l − 1,

then for every continuous map f : ∥Kp(n, l)∥ → Rd there is a point in ∥Kp(n, l)∥

whose Zp-Orbit is mapped to a single point in Rd by f .

This Theorem will be needed later to prove a bound on the chromatic numbers

of the graphs Γ(µ,P , ε). An important tool needed in the proof of Theorem 5.1

is a result of Volovikov which he described in [17]. It is a generalization of the

Borsuk-Ulam Theorem.

Lemma 5.2:

Let X be a connected paracompact Hausdorff space, acted on without fixed points

by a cyclic group Zp of prime order p. For any continuous function f : X → M

and generator T of Zp let

A(f) := {x ∈ X : f(x) = f(Tx) = · · · = f(T p−1x)}

be the set of points of which the Zp-orbit is mapped by f to a single point. Suppose

that H̃ i(X;Zp) = 0 for 0 < i < n and M is a compact Zp orientiable topological

manifold of dimension m. If the map H̃n(f) : H̃n(X;Zp) → H̃n(M ;Zp) has zero

image, then the cohomological dimension over Zp of A(f) is at least n−m(p− 1).

In his book “Using the Borsuk-Ulam Theorem” [6] Matoušek compiled various

formulations of the Borsuk-Ulam Theorem and described it can be generalized

with the concept of Z2 spaces and more generally with EnG spaces where G is a

group. In our case G = Zp and instead of two there will be p ∈ P points that get

mapped to the same point by any continuous function.
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5.1 The simplicial complex Kp(n, l)

Definition 5.3:

Let n, p ∈ N, then τ ⊆ [n+ 1]× [p] is called a partial function if

τ
∣∣
dom(τ)

= τ ∩ (dom(τ)× [p])

is a function. Let τ1, τ2 be partial functions from [n+ 1] to [p]. Now define

τ1 ⊆f τ2 :⇐⇒ dom(τ1) ⊆ dom(τ2) ∧ ∀k ∈ dom(τ1) : τ1(k) = τ2(k).

If a partial function τ is defined on every element of the domain [n+ 1] then it is

called a total function. The set of all partial functions from a set X to a set Y

will be denoted by P (X, Y ).

A component interval of τ is any maximal interval I ⊆ [n + 1] such that τ is

constant on I ∩ dom(τ). Define I(τ) to be the set of component intervals of τ .

In addition to that let f, g be partial functions from the set X to set Y with

dom(f) ∩ dom(g) = ∅ and define

f ⊎ g : dom(f) ∪ dom(g) → Y, x 7→

f(x), x ∈ dom(f),

g(x), x ∈ dom(g). ♠

Definition 5.4:

Let l ∈ N and p ∈ P. Let Vp(n, l) = P ([n+ 1], [p]) with the additional properties

i.) ∀τ ∈ Vp(n, l) : n− l ≤ |dom(τ)|,

ii.) ∀τ ∈ Vp(n, l) : |I(τ)| ≤ l + 1. ♠

Definition 5.5:

Let Kp(n, l) be the abstract simplicial complex with

i.) V (Kp(n, l)) = Vp(n, l),

ii.) the simplices in Kp(n, l) are chains of Vp(n, l) with respect to ⊆f .

This complex is a Zp complex with the action

Zp × Vp(n, l) → Vp(n, l), (k, τ) 7→ λ(k, τ) = k +f τ,

54



with dom(k +f τ) = dom(τ) and ∀i ∈ dom(k +f τ) : (k +f τ)(i) = k +p τ(i). ♠

Definition 5.6:

Let n ∈ N and p ∈ P. Define Sp(n) as the abstract simplicial complex with

i.) V (Sp(n)) = {τ : [n+ 1] → [p] : |dom(τ)| = 1},

ii.) σ ∈ Sp(n) \ ∅ :⇐⇒ ∀τ1, τ2 ∈ σ : (τ1 ̸= τ2) ⇒ (dom(τ1) ∩ dom(τ2) = ∅). ♠

Definition 5.7:

Let n ∈ N and p ∈ P. For a ∈ (Zp \ {0})n+1 define Sp(n, a) as

Sp(n, a) := {0, a(0)} ⋆ {0, a(1)} ⋆ . . . ⋆ {0, a(n)}. ♠

Remark 5.8:

By Lemma 3.19 it holds that ∥Sp(n, a)∥ ∼= Sn for n ∈ N.

Now, our goal is to show that the complex has trivial reduced cohomology groups

H̃ i(∥Kp(n, l)∥;Zp) with coefficients in Zp such that we can apply Lemma 5.2.

Since Zp together with +p and the multiplication of the natural numbers mod p is

a field, it is sufficient to show that the reduced homology groups H̃i(Kp(n, l);Zp)

are trivial. The triviality of the cohomology groups follows from the Universal

Coefficient Theorem ??.

Lemma 5.9:

Let n ∈ N and let p ∈ P. Then

∥Kp(n, n)∥ ≃
(p−1)n+1∨

i=1

Sn.

Proof. First notice that Zp
∼=
∨p−1

i=1 S0 =: S with basepoint 1 via the isomorphism

V (Zp) → V (S), k 7→

 [(1, 1)]∼, k = 0,

[(−1, k)]∼, k ̸= 0.

Furthermore it holds that ∥Sp(n)∥ ≃ ∥
∨n

i=0 Zp∥ ≃
∨n

i=0

∨p−1
j=1 S0 and thus

∥Sp(n)∥ ≃

∥∥∥∥∥∥
∨

a∈(Zp\0)n+1

Sp(n, a)

∥∥∥∥∥∥ 5.8≃
∨

a∈(Zp\0)n+1

Sn.
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It is clear that V (Sp(n)) ∼= Vp(n, n) because the vertices in sd(Sp(n)) are maximal

chains in Sp(n) which are the total functions from [n+ 1] to [p] by definition and

thus Kp(n, n) ∼= sd(Sp(n)). By Lemma 3.13 it follows that

∥Kp(n, n)∥ ≃
∨

a∈(Zp\0)n+1

Sn ≃
(p−1)n+1∨

i=1

Sn

since |(Zp \ {0})n+1| = (p− 1)n+1.

In the following it will be needed to show that Kp(n, n) also has a wedge-

decomposition similiar to Sp(n).

Definition 5.10:

Let n ∈ N and p ∈ P. Define the abstract simplicial complex Kp(n, a) for a ∈

(Zp \ {0})n+1 as

Kp(n, a) = {τ ∈ Kp(n, n) : ∀k ∈ dom(τ) : τ(k) = 0 ∨ τ(k) = a(k)}. ♠

Remark 5.11:

Let n, l ∈ N with n ≥ l, p ∈ P and a ∈ (Zp \ {0})n+1. It holds that

∥Kp(n, a)∥ ∼= ∥sd(Sp(n, a))∥,

∥Kp(l, l)∥ ∼= ∥sd(Sp(l))∥.

Proof. Rememeber that the vertices of sd(Sp(n, a)) are the total chains in Sp(n, a)

which are isomorphic to Vp(n, n) which means they represent total functions which

are either 0 or have the same value as the function a which is the definition of an

element in Kp(n, a). The same argument can be applied for the second claim

∥Kp(l, l)∥ ∼= ∥sd(Sp(l))∥.

Now the following decomposition of Kp(n, n) can be proven:

Lemma 5.12:

Let n ∈ N and p ∈ P. Then it follows that

∥Kp(n, n)∥ ≃

∥∥∥∥∥∥
∨

a∈(Zp\{0})n+1

Kp(n, a)

∥∥∥∥∥∥ .
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Proof. Define Dn as a simplicial complex with

• V (Dn) = P ([m], 0),

• the simplices are chains with respect to ⊆f ,

and define 0̄ as the total, constant zero function. Note that Dn ⊆ Kp(n, n) and

that Dn ⊆ Kp(n, a) for all a ∈ (Zp \ {0})n+1 by definition. Also note that∨
a∈(Zp\{0})n+1

Kp(n, a) =: K contains (p − 1)n+1 copies of Dn glued together at 0̄ and

Kp(n, n) contains one copy of Dn. Dn is contractible since it is the barycentric

subdivision of {0}∗(n+1) which is the (n+1)-fold join of the one point space which

is the same as taking n + 1 nested cones of this space. Since taking a cone

always produces a contractible space this space is contractible and the barycentric

subdivision keeps the homotopy type. Now collapse all copies of Dn in K and

collapse the one copy in Kp(n, n) to 0̄. Then the two sets Kp(n, n) and K are

isomorphic by sending a τ ∈ V (Kp(n, n)) to the component of K where τ ⊆f a.

Since the simplices in Kp(n, n) are chains with respect to ⊆f this means that if

the greatest element of a chain lies in the component Kp(n, a) for some a in K the

whole chain is contained in this component meaning the simplices are maintained

by this isomorphism.

Definition 5.13:

Define Lp(n, l) as a subcomplex of Kp(n, n) with

∀τ ∈ V (Lp(n, l)) : |I(τ)| ≤ l + 1

and define Jp(n, l) as a subcomplex of Kp(n, l) with

∀τ ∈ V (Jp(n, l)) : |dom(τ)| ≥ n− l. ♠

Now note that Kp(n, l) = Jp(n, l) ∩ Lp(n, l). We can use this fact for applying

the Mayer-Vietoris-Sequence for finding the homology groups of ∥Kp(n, l)∥. This

means we first have to study the complexes Jp(n, l) and Lp(n, l) and show that

their homology groups are trivial up to some point.

We start our analysis with the subcomplex Lp(n, l). Notice that if we compare

Kp(l, l) to Lp(n, l) than Lp(n, l) contains additional partial functions namely all
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the functions with a domain not contained in [l + 1]. We will show that we can

extend the complex Kp(l, l) by adding cones to specific subcomplexs such that we

get a new complex that is isomorphic to Lp(n, l). The intuitition behind this idea

is that the added cone points and the join of already existing partial functions will

act like the missing functions with large domain.

Definition 5.14:

Let K be a simplicial complex, p,m ∈ N and let (Lσ)σ∈P ([m],[p]) be a family of

subcomplexes of K such that Lσ ⊆ Lτ if τ ⊆ σ.

Define the complex Cone(K, (Lσ)σ∈P ([m],[p])) inductively. Firstly let K0 = K and

let L0
σ = Lσ for all σ ∈ P ([m], [p]). Now define Xk and Lk

σ by induction on k ≤ m

for σ ∈ P ([k + 1,m], [p]) as

Kk+1 = Cone(Kk, (Lk
(k,i))i∈[p]),

Lk+1
σ = Cone(Lk

σ, (L
k
(k,i)⊎σ)i∈[p])

where (j, i) denotes the partial function τ : [m] → [p] with dom(τ) = {j} and

τ(j) = i. Define Cone(K, (Lσ)σ∈P ([m],[p])) =: Km. Additionally this definition also

works for a set Y ⊆ [m] and all σ ∈ P (Y, [p]) only looking at partial functions with

a resticted domain because Y inherits the natural order of N. ♠

The well-definedness of the induction step follows from the assumption that Aσ ⊆

Aτ if τ ⊆ σ.

Lemma 5.15:

Let K be a simplicial complex and let (Lσ)σ∈P (m,p) be a sequence of subcomplexes

for p,m ∈ N empty or contractible then

∥K∥ ≃ ∥Cone(K, (Lσ)σ∈P (m,p))∥.

Proof. We prove the claim by induction. So let k = 0. Then the claim follows

directly from Lemma 3.18 since the sequence of subcomplexes is finite. Suppose

that the claim holds for an arbitrary k ≤ m− 1. Then since the Lk
σ are all empty

or contractible by Lemma 3.18 we can deduce that Xk+1 is homotopy equivalent

to X0.
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Lemma 5.16:

For n, l ∈ N with n ≥ l and p ∈ P it holds that

∥Lp(n, l)∥ ≃ ∥Cone(Kp(l, l), (Lσ)σ∈P ([l+1,n+1],[p]))∥

where Lσ is defined as

Lσ = {τ ∈ Vp(l, l) : |I(τ ⊎ σ)| ≤ l + 1}.

Proof. For n = l this is trivial. So assume that n > l and let

K := Cone(Kp(l, l), (Lσ)σ∈P ([l+1,n+1],[p])).

We will construct a combinatorial isomorphism Φ: V (Lp(n, l)) → V (K) which

proves that claim of the Lemma since the geometric realizations of the two complexes

will be homeomorphic.

Firstly notice that all τ ∈ Vp(l, l) ⊆ Lp(n, l) are already contained in Kp(l, l).

This means that

Φ|Vp(l,l) = idVp(l,l).

Denote by ∆(k,i) the cone point over the complex Lk
(k,i). Define Φ((k, i)) = ∆(k,i)

for k ∈ [l+1, n+1] which means that this cone point will act as the function (k, i)

in the complex K.

We prove that Φ is well-defined by induction over m from l+1 to n. Let m = l+1

and consider τ ∈ Lp(n, l) where τ ∈ P ([l + 2], [p]). If l + 1 /∈ dom(τ) then

Φ(τ) = τ ∈ Kp(n, l). Otherwise consider the two cases

• Φ(τ) = τ ′ ⊔∆(l+1,i1) for τ
′ ∈ Vp(l, l), and because of the definition of Lp(n, l)

we know that |I(τ)| = |I(τ ′ ⊎ (l + 1, τ(l + 1)))| ≤ l + 1 which means τ ′ ∈

Ll+1
(l+1,τ(l+1)) and thus Φ(τ) ∈ Cone(Ll+1

(l+1,τ(l+1))),

• Φ(τ) = ∆(l+1,τ(l+1)) which is trivially in Cone(Ll+1
(l+1,τ(l+1))).

Now assume that Φ is well-defined for an m < n and consider the case m + 1.

Let τ ∈ Lp(n, l) with τ ∈ P ([m + 2, n + 1]). If m + 1 /∈ dom(τ) then the Φ is

well-defined by applying the induction hypothesis. Otherwise consider the cases
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• Φ(τ) = τ ′ ⊔ ∆(m+1,im) for τ ′ ∈ Vp(m, l). On the one hand, we know that

Φ(τ ′) ∈ Lm
(m,τ ′(m)) which means that τ ′ ∈ Vp(l, l). On the other hand,

we know that |I(τ)| = |I(τ ′ ⊎ (m + 1, τ(m + 1)))| ≤ l + 1 and thus τ ′ ∈

Lm
(m,τ ′(m))⊎(m+1,τ(m+1)) which implies τ ′ ∈ Lm+1

(m+1,τ(m+1)). It follows that Φ(τ) ∈

Cone(Lm+1
(m+1,τ(m+1))),

• Φ(τ) = ∆(m+1,τ(m+1)) which is trivially in Cone(Lm+1
(m+1,τ(m+1))).

Thus Φ is well-defined for all τ ∈ Lp(n, l).

Let τ, τ ′ ∈ Lp(n, l) and assume that Φ(τ) = Φ(τ ′). If τ, τ ′ ∈ Kp(l, l) then

τ = Φ(τ) = Φ(τ ′) = τ ′.

Now assume that τ, τ ′ are both not in Kp(l, l) and τ, τ ′ ∈ Vp(n, l). First assume

that dom(τ) ̸= dom(τ ′). Then w.l.o.g. we can assume that there is a k ∈ [n + 1]

such that k ∈ dom(τ) and k /∈ dom(τ ′). This means that ∆(k,τ(k)) ∈ Φ(τ) and

∆(k,τ(k)) /∈ Φ(τ ′) which contradicts the assumption Φ(τ) = Φ(τ ′) so their domains

must be equal.

Now write dom(τ) = I ∪ J with I ⊆ [l + 1] and J ⊆ [l + 1, n + 1]. Define

J = {k1, . . . , kr} for r ≤ n− l and consider

Φ(τ) = τ1 ⊔ (k1, τ(k1)) ⊔ · · · ⊔ (kr, τ(kr)),

Φ(τ ′) = τ2 ⊔ (k1, τ
′(k1)) ⊔ · · · ⊔ (kr, τ(kr)),

where τ1 = τ |I and τ2 = τ ′I . Since the images of the functions are equal we get

that τ1 = τ2 which means τ |I = τ ′|I and that τ(ki) = τ ′(ki) for all i ∈ J . This

means that τ = τ ′ and thus the function Φ is injective.

Now take σ ∈ K. If σ ∈ Kp(l, l) then σ = τ ∈ Kp(l, l) and sinceKp(l, l) ⊆ Lp(n, l)

we get that Φ(τ) = τ = σ. Now assume that τ /∈ Kp(l, l). By the inductive

definition of K we know that we can write σ as

σ = τ ′ ⊔∆(k1,i1) ⊔ · · · ⊔∆(kr,ir)

for kj ∈ [l + 1, n + 1] and ij ∈ [p] for all j = 1, . . . , r ≤ n − l such that kj1 < kj2
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for j1 < j2. Then

τ ′ ⊔∆(k1,i1) ⊔ · · · ⊔∆(kr−1,ir−1) ∈ Lkr
kr,ir

and by repeated application of the definition we get that

τ ′ ∈ L(k1,i1)⊎···⊎(kr,ir).

This means

τ := τ ′ ⊎ (k1, i1) ⊎ · · · ⊎ (kr, ir) ∈ Lp(n, l)

and Φ(τ) = σ and thus Φ is surjective.

It remains to show that Φ is a simplicial map. So let σ ∈ Lp(n, l). By definition

this is a chain of partial functions with repect to ⊆f . If this chain is contained in

Kp(l, l) then Φ(σ) = σ and thus a simplex in Kp(l, l). If not then we know that

τ ′ ⊔∆(k1,i1) ⊔ · · · ⊔∆(kr−1,ir−1) ⊆ τ ′ ⊔∆(k1,i1) ⊔ · · · ⊔∆(kr−1,ir−1) ⊔∆(kr,ir) (3)

for τ ′ ∈ Vp(l, l) ∪ {∅} and kj ∈ [l + 1, n + 1], ij ∈ [p] for all j = 1, . . . , r ≤ n − l.

This fact and the definition of K imply that the image of an arbitrary simplex

σ ∈ Lp(n, l) is a simplex in K. Now consider that inverse map Φ−1. We can see

that this is a simplicial map by Equation 3 and the fact that by definition of K

there are no simplices in K which simultaneously contain σ1 and σ2 of the form

σ1 = τ ′ ⊔∆(k1,i1) ⊔ · · · ⊔∆(ks,is) ⊔ · · · ⊔∆(kr−1,ir−1),

σ2 = τ ′ ⊔∆(k1,i1) ⊔ · · · ⊔∆(ks,i′s) ⊔ · · · ⊔∆(kr−1,ir−1) ⊔∆(kr,ir),

where τ ′, kj and ij are as above with is ̸= i′s.

Lemma 5.17:

For each σ ∈ P ([l + 1, n+ 1], [p]) the set Lσ is either empty or contractible.

Proof. Prove by induction on N ∋ i ≤ l + 1 that for ρ ∈ [p][i+1,l+1] with l − i

component intervals and ρ(l) ̸= σ(l + 1) that the set

Lσ,ρ = {τ ∈ Vp(i, l) : |I(τ ⊎ ρ ⊎ σ)| ≤ l + 1}

is either empty or contractible. Note that the set is well-defined since in the

61



definition dom(τ) ⊆ [i + 1], dom(ρ) = [i + 1, l + 1] and dom(σ) ⊆ [l + 1, n + 1].

Additionally if i = l then Lσ,ρ = Lσ.

Start with i = 0. Notice that |I(ρ ⊎ σ)| ≥ l since ρ(l) ̸= σ(l + 1). Then there are

two cases

• |I(ρ ⊎ σ)| > l + 1 which means that Lρ,σ = ∅,

• |I(ρ ⊎ σ)| = l + 1 which means that Lρ,σ contains the function τ(0) = ρ(1)

and the empty function and is thus contractible as a one point space.

We consider the induction step i− 1 to i. Define for N ∋ j < p the total function

τj : {i} → {j}, x 7→ j and define

B = {τ ∈ Vp(i− 1, l) : |I(τ ⊎ ρ ⊎ σ)| ≤ l + 1}

and

Bj = {τ ∈ Vp(i− 1, l) : |I(τ ⊎ τj ⊎ ρ ⊎ σ)| ≤ l + 1}.

Firstly Bj is well-defined since dom(τ) ⊆ [i] and dom(ρ) ⊆ [i+ 1] and thus

dom(τ) ∩ dom(τj) ∩ dom(ρ) = ∅.

Next notice that Bj0 = B because τj0(i) = ρ(i + 1) and that Bj are either

contractible or empty by the induction hypothesis.

There are again two cases

• |I(ρ ⊎ σ)| > l + 1 which means that Lσ,ρ is empty,

• |I(ρ ⊎ σ)| ≤ l + 1 then Lρ,σ
∼= Cone(B, (Bj)j∈[p]) as sets and by Lemma 5.15

we get that the realization of Cone(B, (Bj)j∈[p]) is homotopy equivalent to

the geometric realization of B ∪ Cone(Bj0) and since B = Bj0 this is the

same as Cone(B) which is contractible.

The map between Cone(B, (Bj)j∈[p]) → Lρ,σ mentioned above sends each τ ∈ B

to τ ∈ Vp(i−1, l)∩Lρ,σ and sends τ ∈ Cone(Bj) to τ
′ ∈ (V (i, l)\V (i−1, l))∩Lρ,σ

such that τ ⊆f τ
′ and τ ′(i) = j for each j ∈ [p].
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Corollary 5.18:

For p ∈ N and n, l ∈ N with n ≥ l it follows that

∥Lp(n, l)∥ ≃ ∥Sp(l)∥.

Proof. We know from Corollary 5.16 that

∥Lp(n, l)∥ ≃ ∥Cone(Kp(l, l), (Lσ)σ∈P ([l+1,n+1],[p]))∥ = ∥K∥.

Now this chain of equivalence follows

∥K∥ 5.17≃
3.18

∥Kp(l, l)∥
5.11≃ ∥sd(Sp(l))∥

3.13≃ ∥Sp(l)∥.

Lemma 5.19:

Let n, l ∈ N with n ≥ l and let p ∈ P, then for each 0 ≤ i < l − 1 it holds that

H̃i(Jp(n, l);Zp) ∼= 0.

Proof. Let C := {τ ∈ Kp(n, n) : |dom(τ)| < n− l}. From [5, p. 2513, Remark] (C

is isomorphic to Ep,n−l) it follows that the dimension of ∥C∥ is equal to n− l. Let

En = Dn \ C and let Jp(n; a) = Kp(n; a) for all a ∈ (Zp \ {0})n+1. Now it follows

that

∥Jp(n, l)∥ ≃

∥∥∥∥∥∥
∨

a∈(Zp\{0})n+1

Jp(n; a)

∥∥∥∥∥∥ (4)

with the same reasoning as in the proof of Lemma 5.12. Now by 3.35 we get

that H̃i(∥Jp(n; a)∥) = H̃i(∥Kp(n; a)∥ \ ∥C∥) ∼= H̃n−i−1(∥C∥). We know that the

dimension of ∥C∥ is equal to n− l and thus H̃n−i−1(∥C∥) ∼= 0 for all 0 ≤ i < l− 1.

It follows that H̃i(∥Jp(n; a)∥) ∼= 0 for 0 ≤ i < l−1. The conditions of Theorem 3.35

are trivially fulfilled since all spaces involved are geometric realizations of finite

simplicial complexes. Now by Lemma 3.34 and Equation 4 the claim is proven.

Lemma 5.20 (Sabok, [13, Lemma 16]):

Let n, l ∈ N with n ≥ l and let p ∈ P, then for each 0 ≤ i ≤ l − 2 it holds that

H̃ i(Kp(n, l);Zp) ∼= 0.
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Proof. In the following all homology and cohomogy groups have coefficient in Zp.

Claim: Kp(n, l) is connected. Consider a τ ∈ V (Kp(n, l)) which is not a

total function. Then this node is contained in a chain with a total function

τ ′ ∈ V (Kp(n, l)) as its largest element with respect to ⊆f . Since Kp(n, l) is a

simplicial complex it follows that {τ, τ ′} ∈ Kp(n, l). Now let τ and τ ′ be a total

functions in V (Kp(n, l)) such that

τ |D = τ ′|D, D = [n+ 1] \ {i},

τ(i− 1) = τ(i) ̸= τ(i+ 1),

τ(i+ 1) = τ ′(i)

with 1 < i < n. Then there are chains C1 = {τ0, . . . , τ ′′, τ} and C2 = {τ0, . . . , τ ′′, τ ′}

in Kp(n, l) with respect to ⊆f . This means that τ and τ ′ are connected via τ ′′. It

follows that every total function Kp(n, l) is connected to the total zero function by

induction on i. Let τ be a total function. If τ(n) = 0 then this follows immediately

from the reasoning above. If not then let τ ′ be the total function with τ |[n] = τ ′|[n]
and τ ′(n) = 0. Then these functions are connected via τ ′′ with τ ′′|[n] = τ ′|[n] = τ |[n].

Now the argument above can be applied to τ ′ and thus the claim is proven. Now

consider the following Mayer-Vietoris-Sequence (see Theorem 3.38)

· · · → H̃i(∥Jp(n, l)∥ ∩ ∥Lp(n, l)∥)

→ H̃i(∥Jp(n, l)∥)⊕ H̃i(∥Lp(n, l)∥)

→ H̃i(∥Jp(n, l)∥ ∪ ∥Lp(n, l)∥) → · · · → 0.

Remember that Jp(n, l) ∩ Lp(n, l) = Kp(n, l). Now by Lemma 5.19 we know that

H̃i(∥Jp(n, l)∥) ∼= 0 and H̃i(∥Lp(n, l)∥) ∼= 0 by Corollary 5.18 and by the fact

that the realization of Sp(n) is the wedge of (p− 1)n+1 n-dimensional spheres for

0 ≤ i < l − 1. Thus the direct sum of these groups is trivial. Also it is clear that

H̃i(∥Jp(n, l)∥ ∪ ∥Lp(n, l)∥) ∼= 0 by a similiar argument as in 5.19 also using the

triviality of the cohomology and then applying Alexanders duality. The exactness

of the sequence yields that H̃i(∥Kp(n, l)∥) ∼= 0 for 0 ≤ i ≤ l − 2 and thus by
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Corollary 3.37 it follows that

H̃ i(∥Kp(n, l)∥) ∼= 0

as claimed.

Now we can prove Theorem 5.1.

Proof. Firstly by Lemma 5.20 we know that for 0 ≤ i < l − 1 we have that

H̃ i(∥Kp(n, l)∥,Zp) ∼= 0.

Now let f ∈ C(∥Kp(n, l)∥,Rd). Notice that d < l by the assumptions on d.

Since the simplicial complex is compact the geometric realization is contained

in a ball around the origin with finite radius B = Br(0) for r ∈ R>0 the map

f can be resticted to a map fB = f |B. It remains to be shown that the map

f̃ = H̃ l−1(fB) : H̃
l−1(∥Kp(n, l)∥) → H̃ l−1(B) has zero image. Since the reduced

cohomology groups of this ball are all trivial because the ball is contractible we

get that f̃ is the zero map.

We can conclude that the set A(f) has at least one element and thus the claim

of the Theorem is proven.
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6 Bound on the chromatic numbers

In this last section a bound on the chromatic numbers of the graph Γ(ε,P , µ) is

derived with the help of the main result of the last section.

In this whole section let X be a set, ε ∈ R≥0 and let µ be a diffuse submeasure

on the a subalgebra B of P(X).

Definition 6.1:

Define for each δ ∈ R≥0 the minimal cardinality of P ∈ Π(B) for which it holds

that

∀P ∈ P : µ(P ) < δ

as kµ(δ). This is well-defined since µ is diffuse. Furthermore define the map

Kε
µ : N → N as

Kε
µ(n) = kµ

( ε

4n

)
and define for each n ∈ N the element Qε

µ(n) ∈ Π(B) as

Qε
n := {Iε1 , . . . , Iεk}

where k = Kε
µ(n) and µ(Ii) <

ε
4n

for each i = 1, . . . , k. ♠

Remark 6.2:

The map Kε
µ is increasing and has the lower bound

Kε
µ(n) ≥

4n

ε
· µ(X)

for each n ∈ N.

Proof. Firstly prove the bound on the map. To this end consider the measurable

partition Qε
µ(n). By definition we know that µ(P ) < ε

4n
for each Q ∈ Qε

µ(n). Let

k = |Qε
µ(n)|. It follows that

µ(X) = µ

(
k⋃

i=1

Ik

)
≤

k∑
i=1

µ(Ik) <
k∑

i=1

ε

4n
= Kε

µ(n) ·
ε

4n

and hence Kε
µ(n) >

4n
ε
· µ(X). The fact that the map is increasing follows from

this inequality.
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Assertion 6.3:

Let F ε
µ : N → N be an arbitrary increasing map such that

Kε
µ ◦ F ε

µ = idN.

The existence of such a map follows from the fact that Kε
µ is increasing and

unbounded by the previous remark.

Lemma 6.4:

The map F ε
µ is unbounded.

Proof. Assume that there exists a bound on F ε
µ. Since this map takes values in N

and is increasing this means that the map eventually becomes constant. But since

Kε
µ is increasing and unbounded this would be a contradiction to the definition of

F ε
µ.

Definition 6.5:

Define Cε
µ as

Cε
µ :=

3

√
µ(X)2

16ε
.

Additionally define Pε
µ(n) ∈ Π(B) with cardinality N ε

µ(n) such that µ(P ) < 1
n
for

each P ∈ Pε
µ(n) and

Qε
µ(n) ≼ Pε

µ(n)

for n ≤ F ε
µ(C

ε
µ · 3

√
n). ♠

The following Lemma is just an inequality needed to prove the main Theorem of

this last section.

Lemma 6.6:

Let d, n ∈ N+ with d < F ε
µ(C

ε
µ · 3

√
n) and let k = Kε

µ(d). Then there is a p ∈ P

dependent of the choice of k and d such that

dp+ 1

n
<
ε

8
.
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Proof. By Betrand’s postulate7 there exists a prime p ∈ P such that

k(d+ 1) < p < 2k(d+ 1).

Now assume that the claim of the Lemma is false. This would imply dp ≥ nε
8
. By

Remark 6.2 we know that

k ≥ 4d

ε
· µ(X)

and thus

d+ 1 ≤ 4d =
ε

µ(X)

(
4d

ε
µ(X)

)
≤ ε

µ(X)
k.

Now we can deduce that

nε

8
≤ dp ≤ 2k(d+ 1)d < 2k(d+ 1)2

⇒nε

16
< k(d+ 1)2

∗
≤ ε2

(µ(X))2
k3

⇒Kε
µ(d) = k

∗∗
> Cε

µ · 3
√
n.

The inequality ∗ follows from the fact that ε
µ(X)

k ≥ d+1 and thus the quantity is

greater or equal to one. And the inequality ∗∗ follows by rearranging the inequality

∗ and the definition of Cε
µ.

Since F ε
µ is increasing by definition we can apply it to both sides yielding us

F ε
µ(K

ε
µ(d)) = d ≥ F ε

µ(C
ε
µ · 3

√
n)

contradicting the assumptions on d.  

Theorem 6.7 (Sabok, [13, Theorem 18]):

For each ε ∈ R>0 it holds that

χ(Γ(ε,Pε
µ(n), µ)) ≥ F ε

µ(C
ε
µ · 3

√
n).

Proof. Let n ∈ N and define kn := N ε
µ(n)−1. Define the submeasure µn on [kn+1]

7This is a Theorem from number theory proving the existence of a prime p for any n ∈ N
with n > 1 such that n < p < 2n. For a proof of this see [3].
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as

µn(A) := µ

(⋃
i∈A

Ai

)
, A ∈ P([kn + 1])

where {A0, . . . , Akn} = Pε
µ(n).

Now suppose that d < F ε
µ(C

ε
µ · 3

√
n) and that there exists a coloring c : Zkn+1 →

{1, . . . , d} of Γ(ε,Pε
µ(n), µ). Let k = Kε

µ(d).

Let π ∈ Sym([kn + 1]) such that for I := {I1, . . . , Ik} ∈ Π(π([kn + 1])) where the

Ii are consecutive intervals8 and Q := {
⋃
i∈I
Ai : I ∈ I} it holds that

∀Q ∈ Q : µ(Q) <
1

4d
.

This is possible because Q ≼ Pε
µ(n) and because of the assumption on d.

Now let p ∈ P as described in the proof of Lemma 6.6 and let l = dp. For

f ∈ Vp(kn, l) define the extension of f to a total function as

f̄ : [kn + 1] → [p],

f(x), x ∈ dom(f),

0, otherwise.

We can extend the coloring c to c̄ : Vp(kn, l) → {1, . . . , d} by c̄(f) = c(f̄) for each

f ∈ Vp(kn, l). Now define the map c̃ as

c̃ : Vp(kn, l) → Rd, f 7→ ec̄(f).

This map can be affinely extended to a map ∥c̃∥ on the geometric realization

∥Kp(kn, l)∥. Especially, this is a continuous map. Now since l > d(p − 1) we

can apply Theorem 5.1 and get that there exists x0 ∈ ∥Kp(kn, l)∥ such that the

Zp-Orbit9 of this point gets send to a single point by ∥c̃∥.

We know that x0 is contained in the image of a maximal chain {hl, . . . h0} where

hl ⊆f · · · ⊆f h0. Now choose N ∋ i0 < d such that the (x0)i0 ̸= 0 (in the case that

x0 is the zero vector just choose another geometric realization which is isometric

to the original one and just translated by some small vector). We can conclude

8This means that they contain a range of numbers {i, i + 1, . . . , j − 1, j} for 0 ≤ i ≤ j ≤ kn
and that for each i ∈ [kn + 1] \ {0} it holds that ∀k ∈ Ii∀j ∈ Ii+1 : k < j.

9Define the Zp action on ∥Kp(kn, l)∥ as the affine extension of the Zp-action on Vp(kn, l) (see
5.5).
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that there exists m ∈ {0, . . . , l} such that c̃(hm) = ei0 and thus c̄(hm) = i0. This

follows from the fact that ∥c̃∥ is an affine map which means that it preserves

the barycentric coordinates of x0. Also observe that for each q ∈ Zp there is an

mq ∈ {0, . . . , l} such that c̄(hmq +f q) = i0 since ∥c̃∥(x0 +f q) = ∥c̃∥(x) (we can

assume that (x0 +f q)i0 ̸= 0 by the same isometry argument as for the case where

q = 0 since there are only finitely many q). Let h = hm and define the set Ah as

Ah := {j ∈ Zp : ∃J ∈ I(h) :

(h(J) = {j},∃I1, I2 ∈ I : (I1 ̸= I2 ∧ J ∩ I1 ̸= ∅ ≠ J ∩ I2))}.

It follows that |Ah| ≤ k − 1 since the elements of I are consecutive and disjoint

and |I| = k. Furthermore define Bh as

Bh := [p] \ Ah.

It follows immediately that |Bh| ≥ p − k + 1. By definition of Ah it follows for

each j ∈ Bh that

h−1({j}) =

{
M⋃

m=1

Jm : N ∋M ≤ l + 1, ∃I ∈ I : Jm ⊆ I

}
.

By the choice of p we get

k

p
<

1

1 + d
= 1− d

d+ 1

⇒1− k

p
>

d

d+ 1

⇒
(
1− k

p

)
(d+ 1) > d

and hence (p− k)(d+ 1) > dp = l.

From (p − k + 1)(d + 1) > l + 1 and |I(h)| ≤ l + 1 we get the existence of an

element q0 ∈ Bh such that h−1({q0}) contains less than d+ 1 component intervals

of h. It follows by definition of I that

µn(h
−1({q0})) ≤

dε

4d
=
ε

4
. (5)
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Define f := hmp−1−q0
+f (p − 1 − q0) and g := hmp−q0

+f (p − q0). It remains to

show that

µn({i ∈ [kn + 1] : f̄(i) + 1 ̸= ḡ(i)}) < ε (6)

which implies that f̄ and ḡ are connected in Γ(ε,Pε
µ(n), µ). This will be a contradiction

because

c(f̄) = c̄(f) = c̄(hmp−1−q0
+f (p−1− q0)) = i0 = c̄(hmp−q0

+f (p− q0)) = c̄(g) = c(ḡ)

as we have established earlier. The functions h and hmq−1−q0 differ in at most l+1

elements of [kn + 1] since h ⊆f hmq−1−q0 or hmq−1−q0 ⊆f h and the fact that these

functions have at most l + 1 component intervals. The same reasoning works for

hmq−q0 .

From Lemma 6.6 it follows that

µn({i ∈ [kn + 1] : hmq−1−q0(i) ̸= h(i)}) < ε

8
, (7)

µn({i ∈ [kn + 1] : hmq−q0(i) ̸= h(i)}) < ε

8
. (8)

On the one hand we can deduce that

µn({i ∈ [kn + 1] : f̄ +p 1 ̸= f̄ + 1}) = µn(f̄
−1({p− 1}))

∗
≤ µn(f

−1({p− 1})) + ε

8
Def.f

≤ µn(h
−1
mq−1−q0

({q0})) +
ε

8
(7)

≤ µn(h
−1({q0})) +

ε

8
+
ε

8
(5)

≤ ε

8
+
ε

4
.

The inequality ∗ follows from f ⊆f f̄ and |dom(f̄)| − |dom(f)| ≤ l. Furthermore

notice that

µn({i ∈ [kn + 1] : f̄(i) +p 1 ̸= h(i) +p (p− q0)})

= µn({i ∈ [kn + 1] : f̄(i) ̸= h(i) +p (p− 1− q0)})
∗
≤ µn({i ∈ [kn + 1] : f(i) ̸= h(i) +p (p− 1− q0)}) +

ε

8

= µn({i ∈ [kn + 1] : hmq−1−q0(i) +q (p− 1− q0) ̸= h(i) +p (p− 1− q0)}) +
ε

8
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= µn({i ∈ [kn + 1] : hmq−1−q0(i) ̸= h(i)}) + ε

8
(7)

≤ ε

4
.

The inequality ∗ follows from the same reasoning like above. Additionally we get

that

µn({i ∈ [kn + 1] : ḡ(i) ̸= h(i) +p (p− q0)})
∗
≤ µn({i ∈ [kn + 1] : g(i) ̸= h(i) +p (p− q0)}) +

ε

8

= µn({i ∈ [kn + 1] : hmq−q0(i) +p (p− q0) ̸= h(i) +p (p− q0)}) +
ε

8

= µn({i ∈ [kn + 1] : hmq−q0(i) ̸= h(i)}) + ε

8
(8)

≤ ε

4
.

Again the inequality ∗ follows like above.

From the last three inequalities the claim in (6) follows as needed.

Theorem 4.4 and this Theorem now imply the following result.

Theorem 6.8 (Sabok, [13, Theorem 1]):

For any non-trivial, Hausdorff, abelian topological group G and arbitrary diffuse

submeasure µ the group L0(µ,G) is extremely amenable.

Proof. This follows directly from Theorem 4.4 and Theorem 6.7.
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A Submeasures

Definition A.1:

LetA be a Boolean algebra and µ : A → [0,∞). The map µ is called a submeasure

if

i.) µ(0) = 0,

ii.) ∀A,B ∈ A : A ≤ B ⇒ µ(A) ≤ µ(B),

iii.) ∀A,B ∈ A : µ(A ∨B) ≤ µ(A) + µ(B). ♠

The thesis will assume that every submeasure is a submeasure on the a subalgebra

of the power set algebra of a set X. This is possible because of the representation

Theorem of stone [16].

Definition A.2:

Let X be a set. Then Π(X) is the set of all finite partitions of X, which means:

Π(X) :=
{
A ⊆ Pfin(X) : (∀A,B ∈ A : A ∩B = ∅) ∧

⋃
A = X

}
.

Let P1,P2 ∈ Π(X). P1 is said to refine P2 (P2 ≼ P1) if

∀A ∈ P1∃B ∈ P2 : A ⊆ B.

For every P ∈ Π(X) define the map ιP : X → P with

ιP : x 7→



A1, if x ∈ A1,

A2, if x ∈ A2,

...

An, if x ∈ An,

where k = |P|. The set Π(B) contains all finite partitions of X but with the

additional constraint that they have to be measurable with respect to a submeasure

µ on the Boolean algebra of subsets B of X.

Let f : X → Y be a step function for a set Y . Then f is measurable if

∀P ∈ Pf : f
−1(P ) ∈ B. ♠
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Definition A.3:

Let X be a set and let µ be a submeasure on a subalgebra B of P(X). Then µ is

called diffuse if

∀ε ∈ R>0∃P ∈ Π(B)∀P ∈ P : µ(P ) < ε. ♠

Definition A.4:

Let (P,≤) be a partially ordered set. The set is called directed if for every p1, p2 ∈

P there exists an element p3 ∈ P such that

p1 ≤ p3 ∧ p2 ≤ p3. ♠

Theorem A.5:

Let X be a set. Then the set Π(X) together with the binary operation ≼ is a

directed set.

Proof. Reflexivity and transitivity follow directly from the reflexivity and transitivity

of the⊆ relation. Now let P1,P2 ∈ Π(X). Define P3 := {P∩P ′ : P ∈ P1, P
′ ∈ P2}.

Since for any two sets A,B it holds that A∩B ⊆ A and A∩B ⊆ B it follows that

P1 ≼ P3 ∧ P2 ≼ P3.

P1 P2 P3

Figure 6: Example of 2 partions of the square P1 and P2 with common upper
bound P3.

Remark A.6:

If X is an infinite set then Π(X) is also infinite.
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Proof. Define P ⊆ Π(X) as follows

P :=
{
{{x}, X \ {x}} : x ∈ X

}
.

It is now clear that |P| = |X| and since P ⊆ Π(X) it follows that

|X| ≤ |Π(X)| .
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